

L04: BLUE under linear restrictions

1. Linear model under linear restrictions

(1) Linearly restricted model

$y = X\beta + e$, $e \sim (0, \sigma^2 I_n)$, under $G\beta = 0$ is a linearly restricted model. The restriction

$$G\beta = 0 \iff \beta \in \mathcal{N}(G) = \mathcal{N}(G^+G) = \mathcal{R}(I - G^+G)$$

confines β in a linear space of R^p . Thus the restriction is a linear restriction. We consider point estimation for $A\beta$ in this model.

(2) One-way ANOVA

Sample of one-way ANOVA $y_i = \mu_i + \epsilon_i$ can be written as $y = M\mu + e$ where the p columns of $M \in R^{n \times p}$ are values of p indicators for p treatments. So M has full column rank.

Consequently $A\mu$ is estimable for all A . With minimum norm LSE for β , $\hat{\beta} = M^+y$, AM^+y is BLUE for $A\beta$.

Let $\mu_{..} = \frac{\sum_i \mu_i}{p}$ and $\alpha_i = \mu_i - \mu_{..}$. Then $\theta = (\mu_{..}, \alpha_1, \dots, \alpha_p)' = A\mu$. So BLUE of θ can be obtained. However θ can be modeled in $y = X\theta + e$, $e \sim (0, \sigma^2 I_n)$, under $\alpha_1 + \dots + \alpha_p = 0$. We need a way to estimator θ in this restricted model.

(a)](3)] Two-way ANOVA with interactions

Sample of two-way ANOVA with interactions $y_{ij} = \mu_{ij} + \epsilon_{ij}$ can be written as $y = M\mu + e$ where the ab columns of $M \in R^{n \times ab}$ are values of ab indicators for ab treatments. So M has full column rank.

Consequently $A\mu$ is estimable for all A . With minimum norm LSE for β , $\hat{\beta} = M^+y$, AM^+y is BLUE for $A\mu$.

Let $\mu_{..}$ be the average of μ_{ij} , $\mu_{i..}$ be the average of $\mu_{i1}, \dots, \mu_{ib}$, $\mu_{..j}$ be the average of $\mu_{1j}, \dots, \mu_{aj}$, $\alpha_i = \mu_{i..} - \mu_{..}$, $\beta_j = \mu_{..j} - \mu_{..}$ and $(\alpha)\beta_{ij} = \mu_{ij} - \mu_{i..} - \mu_{..j} + \mu_{..}$. Then

$$\theta = (\mu_{..}, \alpha_1, \dots, \alpha_a, \beta_1, \dots, \beta_b, (\alpha\beta)_{11}, \dots, (\alpha\beta)_{ab})' = A\mu.$$

So BLUE of θ can be obtained. However θ can be modeled in $y = X\theta + e$, under $\sum_i \alpha_i = \sum_i (\alpha\beta)_{ij} = 0$ and $\sum_j \beta_j = \sum_j (\alpha\beta)_{ij} = 0$. How can we estimate θ in this restricted model?

2. Concepts

Consider model $y = X\beta + e$, $e \sim (0, \sigma^2 I_n)$, under $G\beta = 0$.

(1) LSE of β under $G\beta = 0$.

$$\begin{aligned} & \hat{\beta} \text{ is a LSE for } \beta \text{ under } G\beta = 0 \\ \iff & \hat{\beta} \in \mathcal{N}(G) \text{ and } \|y - X\hat{\beta}\|^2 \leq \|y - X\beta\|^2 \text{ for all } \beta \in \mathcal{N}(G) \\ \iff & \dots \iff \hat{\beta} \in [X(I - G^+G)]^+y + \mathcal{N}(X) \cap \mathcal{N}(G). \end{aligned}$$

Remarks: (i) $A' = A = A^2 \implies A^+ = A$ and $AA^+ = A = A^+A$.

Thus $(I - G^+G)^+(I - G^+G) = I - G^+G$.

(ii) $(AB)^+ = B^+B(AB)^+$ because with $H = B^+B(AB)^+$, $(AB)H(AB) = AB$; $H(AB)H = H$; $(AB)H$ is symmetric; and $H(AB)$ is symmetric.

(iii) By (i) and (ii) $[X(I - G^+G)]^+ = (I - G^+G)[X(I - G^+G)]^+$.

(2) LUE under $G\beta = 0$

$$\begin{aligned} Ly \text{ is LUE for } A\beta \text{ under } G\beta = 0 &\stackrel{\text{def}}{\iff} E(Ly) = A\beta \text{ for all } \beta \in \mathcal{N}(G) \\ &\iff \dots \iff A(I - G^+G) = LX(I - G^+G) \end{aligned}$$

(3) Estimable parameter under $G\beta = 0$

$$\begin{aligned} A\beta \text{ is estimable under } G\beta = 0 &\stackrel{\text{def}}{\iff} \exists \text{ a LUE } Ly \text{ for } A\beta \text{ under } G\beta = 0 \\ &\iff \exists L \text{ such that } A(I - G^+G) = LX(I - G^+G) \end{aligned}$$

(4) BLUE under $G\beta = 0$

$$\begin{aligned} By \text{ is BLUE for } A\beta \text{ under } G\beta = 0 \\ \iff By \text{ is a LUE for } A\beta \text{ and} \\ \text{Cov}(By) \leq \text{Cov}(Ly) \text{ for all LUE } Ly \text{ for } A\beta \text{ under } G\beta = 0 \\ \iff A(I - G^+G) = BX(I - G^+G) \text{ and } \text{Cov}(By) \leq \text{Cov}(Ly) \text{ for all } L \\ \text{such that } A(I - G^+G) = LX(I - G^+G) \end{aligned}$$

3. BLUE under $G\beta = 0$

(1) A Theorem

Suppose $A\beta$ is estimable under $G\beta = 0$.

With LSE $\hat{\beta} = [X(I - G^+G)]^+y$ for β under $G\beta = 0$,

$A\hat{\beta}$ is BLUE for $A\beta$ under $G\beta = 0$.

(2) Proof

First, $A\beta$ is estimable under $G\beta = 0$. So there is a LUE Ly for $A\beta$ under $G\beta = 0$.

By (2) of 2,

$$A(I - G^+G) = LX(I - G^+G).$$

This Ly will be a representative of all LUEs for $A\beta$ under $G\beta = 0$.

Secondly we show $A\hat{\beta} = A[X(I - G^+G)]^+y = By$ is also a LUE for $A\beta$ under $G\beta = 0$.

By (2) of 2 we show $A(I - G^+G) = BX(I - G^+G)$.

Note that by the definition of $A\hat{\beta}$, $B = A[X(I - G^+G)]^+$.

By Remark (iii) in (2) of 1, $B = A(I - G^+G)[X(I - G^+G)]^+$.

By $A(I - G^+G) = LX(I - G^+G)$, $B = LHH^+$ where $H = X(I - G^+G)$.

By $A(I - G^+G) = LX(I - G^+G)$ again,

$$BX(I - G^+G) = BH = LHH^+H = LH = LX(I - G^+G) = A(I - G^+G).$$

Finally, we show $\text{Cov}(Ly) - \text{Cov}(By) \geq 0$.

$$\begin{aligned} \text{Cov}(Ly) - \text{Cov}(By) &= \sigma^2 LL' - \sigma^2 BB' \\ &= \sigma^2 LL' - \sigma^2 LHH^+L' = \sigma^2 L(I - HH^+)L' \\ &= [\sigma L(I - HH^+)] [\sigma L(I - HH^+)]' \geq 0 \end{aligned}$$

L05: Generalized least square estimators

1. Generalized least square estimators

Consider linear model $y = X\beta + e$ with $E(e) = 0$.

(1) A general metric system

With positive definite $D \in R^{n \times n}$ for $x, y \in R^n$ $\langle x, y \rangle_D = y'Dx$ is an inner product with norm $\|x\|_D = \sqrt{\langle x, x \rangle_D} = \sqrt{x'Dx}$.

When $D = I$, $\langle x, y \rangle = y'x$ is popular Frobenius inner product with induced Frobenius norm $\|x\| = \sqrt{\langle x, x \rangle} = \sqrt{x'x}$. Thus $\langle \cdot, \cdot \rangle_D$ is a general inner product.

(2) Relations

$\langle x, y \rangle_D$ and $\|x\|_D^2$ can be expressed via Frobenius inner product and Frobenius norm. $\langle x, y \rangle_D = y'Dx = (D^{1/2}y)'(D^{1/2}x) = \langle D^{1/2}x, D^{1/2}y \rangle$ and $\|x\|_D^2 = \|D^{1/2}x\|^2$.

(3) Generalized least square estimators (GLSE)

$\hat{\beta}$ is a generalized least square estimator (GLSE) with respect to $\langle \cdot, \cdot \rangle_D$
 $\iff \hat{\beta} \in \text{GLSE}_D(\beta) \iff \|y - X\hat{\beta}\|_D^2 \leq \|y - X\beta\|_D^2$ for all β .

(4) The collection of all GLSEs

Let $\text{GLSE}_D(\beta)$ be the collection of all GLSEs for β with respect to $\langle \cdot, \cdot \rangle_D$.

Then $\text{GLSE}_D(\beta) = (D^{1/2}X)^+(D^{1/2}y) + \mathcal{N}(X)$.

$$\begin{aligned}
\text{Proof } \hat{\beta} \in \text{GLSE}_D(\beta) &\iff \|y - X\hat{\beta}\|_D^2 \leq \|y - X\beta\|_D^2 \text{ for all } \beta \\
&\iff \|D^{1/2}y - D^{1/2}X\hat{\beta}\|^2 \leq \|D^{1/2}y - D^{1/2}X\beta\|^2 \text{ for all } \beta \\
&\iff D^{1/2}X\hat{\beta} = \pi(D^{1/2}y \mid \mathcal{R}(D^{1/2}X)) \\
&\iff D^{1/2}X\hat{\beta} = (D^{1/2}X)(D^{1/2}X)^+(D^{1/2}y) \\
&\iff D^{1/2}X \left[\hat{\beta} - (D^{1/2}X)^+(D^{1/2}y) \right] = 0 \\
&\iff \hat{\beta} - (D^{1/2}X)^+(D^{1/2}y) \in \mathcal{N}(D^{-1/2}X) \\
&\iff \hat{\beta} \in (D^{1/2}X)^+(D^{1/2}y) + \mathcal{N}(D^{1/2}X) \\
&\iff \hat{\beta} \in (D^{1/2}X)^+(D^{1/2}y) + \mathcal{N}(X).
\end{aligned}$$

Comment: $\text{GLSE}_I(\beta) = X^+y + \mathcal{N}(X) = \text{LSE}(\beta)$ also denoted as OLSE(β) for ordinary LSE.

2. A subset of $\text{LUE}(A\beta)$.

Consider $y = X\beta + e$ with $E(e) = 0$.

(1) Recall: $A\beta$ is estimable $\iff A = LX$ for some L .
 Ly is a LUE for $A\beta \iff A = LX$.

(2) A Lemma

If $A\beta$ is estimable, then (i) $A \cdot \text{GLSE}_D(\beta) = \{A(D^{1/2}X)^+(D^{1/2}y)\}$.
(ii) $A(D^{1/2}X)^+(D^{1/2}y) \in \text{LUE}(A\beta)$.

Proof $A\beta$ is estimable \iff there exists L such that $A = LX$.

(i) By $A = LX$,

$$\begin{aligned} A \cdot \text{GLSE}_D(\beta) &= A \{(D^{1/2}X)^+(D^{1/2}y) + \mathcal{N}(X)\} \\ &= A(D^{1/2}X)^+(D^{1/2}y) + A\mathcal{N}(X) = A(D^{1/2}X)^+(D^{1/2}y) + LX\mathcal{N}(X) \\ &= A(D^{1/2}X)^+(D^{1/2}y) + \{0\} = \{A(D^{1/2}X)^+(D^{1/2}y)\}. \end{aligned}$$

(ii) By $A = LX$, $A(D^{1/2}X)^+(D^{1/2}y) = By$ with

$$B = A(D^{1/2}X)^+D^{1/2} = LX(D^{1/2}X)^+D^{1/2} = LD^{-1/2}(D^{1/2}X)(D^{1/2}X)^+D^{1/2}.$$

For $By \in \text{LUE}(A\beta)$ we show $A = BX$.

$$BX = LD^{-1/2}(D^{1/2}X)(D^{1/2}X)^+(D^{1/2}X) = LD^{-1/2}(D^{1/2}X) = LX = A.$$

(3) A subset of $\text{LUE}(A\beta)$

By (2) for estimable $A\beta$,

$$\{A(D^{1/2}X)^+(D^{1/2}y) : D \in R^{n \times n} \text{ is positive definite}\} \subset \text{LUE}(A\beta).$$

3. BLUE

Consider $y = X\beta + e$, $e \sim (0, \sigma^2 V)$.

(1) Definition for BLUE

For estimable $A\beta$, By is BLUE if $By \in \text{LUE}(A\beta)$ and $\text{Cov}(By) \leq \text{Cov}(Ly)$ for all $Ly \in \text{LUE}(A\beta)$.

(2) Theorem

For estimable $A\beta$ in model $y = X\beta + e$, $e \sim (0, \sigma^2 V)$, $A(V^{-1/2}X)^+(V^{-1/2}y)$ is BLUE.

Proof By (3) of 2, with $D = V^{-1}$, $A(V^{-1/2}X)^+(V^{-1/2}y) \in \text{LUE}(A\beta)$.

Suppose Ly is also a LUE for $A\beta$. Then $A = LX$. We need to show

$$\text{Cov}(A(V^{-1/2}X)^+(V^{-1/2}y)) \leq \text{Cov}(Ly).$$

$$\text{Cov}(Ly) = \sigma^2 LVL' = \sigma^2 (LV^{1/2})(LV^{1/2})'.$$

Write $A(V^{-1/2}X)^+(V^{-1/2}y) = By$. By $A = LX$,

$$\begin{aligned} B &= A(V^{-1/2}X)^+V^{-1/2} = LX(V^{-1/2}X)^+V^{-1/2} \\ &= LV^{1/2}(V^{-1/2}X)(V^{-1/2}X)^+V^{-1/2} = (LV^{1/2})HH^+ \end{aligned}$$

where $H = V^{-1/2}X$. So $\text{Cov}(By) = \sigma^2 BB' = \sigma^2 (LV^{1/2})HH^+(LV^{1/2})'$. Thus

$$\begin{aligned} \text{Cov}(Ly) = \text{Cov}(By) &= \sigma^2 (LV^{1/2}(I - HH^+)(LV^{1/2})' \\ &= [\sigma(LV^{1/2})(I - HH^+)] [\sigma(LV^{1/2})(I - HH^+)]' \geq 0. \end{aligned}$$