
L04: BLUE under linear restrictions

1. Linear model under linear restrictions

(1) Linearly restricted model
y = Xβ + e, e ∼ (0, σ2In), under Gβ = 0 is a linearly restricted model. The restriction

Gβ = 0 ⇐⇒ β ∈ N (G) = N (G+G) = R(I −G+G)

confines β in a linear space of Rp. Thus the restriction is a linear restriction. We consider
point estimation for Aβ in this model.

(2) One-way ANOVA
Sample of one-way ANOVA yi = µi + ϵi can be written as y = Mµ + e where the p
columns of M ∈ Rn×p are values of p indicators for p treatments. So M has full column
rank.
Consequently Aµ is estimable for all A. With minimum norm LSE for β, β̂ = M+y,
AM+y is BLUE for Aβ.

Let µ. =
∑

i µi

p and αi = µi − µ.. Then θ = (µ., α1, .., αp)
′ = Aµ. So BLUE of θ can be

obtained. However θ can be modeled in y = Xθ+e, e ∼ (0, σ2In), under α1+· · ·+αp = 0.
We need a way to estimator θ in this restricted model.

(a) ](3)] Two-way ANOVA with interactions
Sample of two-way ANOVA with interactions yij = µij+ϵij can be written as y = Mµ+e
where the ab columns of M ∈ Rn×ab are values of ab indicators for ab treatments. So M
has full column rank.
Consequently Aµ is estimable for all A. With minimum norm LSE for β, β̂ = M+y,
AM+y is BLUE for Aµ.
Let µ.. be the average of µij , µi. be the average of µi1, .., µib, µ.j be the average of
µ1j , .., µaj , αi = µi. − µ.., βj = µ.j − µ.. and (α)βij = µij − µi. − µ.j + µ... Then

θ = (µ.., α1, .., αa, β1, .., βb, (αβ)11, .., (αβ)ab)
′ = Aµ.

So BLUE of θ can be obtained. However θ can be modeled in y = Xθ + e, under∑
i αi =

∑
i(αβ)ij = 0 and

∑
j βj =

∑
j(αβ)ij = 0. How can we estimate θ in this

restricted model?

2. Concepts
Consider model y = Xβ + e, e ∼ (0, σ2In), under Gβ = 0.

(1) LSE of β under Gβ = 0.

β̂ is a LSE for β under Gβ = 0
def⇐⇒ β̂ ∈ N (G) and ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β ∈ N (G)

⇐⇒ · · · ⇐⇒ β̂ ∈ [X(I −G+G)]+y +N (X) ∩N (G).

Remarks: (i) A′ = A = A2 =⇒ A+ = A and AA+ = A = A+A.
Thus (I −G+G)+(I −G+G) = I −G+G.

(ii) (AB)+ = B+B(AB)+ because with H = B+B(AB)+, (AB)H(AB) = AB;
H(AB)H = H; (AB)H is symmetric; and H(AB) is symmetric.

(iii) By (i) and (ii) [X(I −G+G)]+ = (I −G+G)[X(I −G+G)]+.
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(2) LUE under Gβ = 0

Ly is LUE for Aβ under Gβ = 0
def⇐⇒ E(Ly) = Aβ for all β ∈ N (G)
⇐⇒ · · · ⇐⇒ A(I −G+G) = LX(I −G+G)

(3) Estimable parameter under Gβ = 0

Aβ is estimable under Gβ = 0
def⇐⇒ ∃ a LUE Ly for Aβ under Gβ = 0
⇐⇒ ∃L such that A(I −G+G) = LX(I −G+G)

(4) BLUE under Gβ = 0
By is BLUE for Aβ under Gβ = 0

def⇐⇒ By is a LUE for Aβ and
Cov(By) ≤ Cov(Ly) for all LUE Ly for Aβ under Gβ = 0

⇐⇒ A(I −G+G) = BX(I −G+G) and Cov(By) ≤ Cov(Ly) for all L
such that A(I −G+G) = LX(I −G+G)

3. BLUE under Gβ = 0

(1) A Theorem
Suppose Aβ is estimable under Gβ = 0.
With LSE β̂ = [X(I −G+G)]+y for β under Gβ = 0,
Aβ̂ is BLUE for Aβ under Gβ = 0.

(2) Proof
First, Aβ is estimable under Gβ = 0. So there is a LUE Ly for Aβ under Gβ = 0.
By (2) of 2,

A(I −G+G) = LX(I −G+G).

This Ly will be a representative of all LUEs for Aβ under Gβ = 0.
Secondly we show Aβ̂ = A[X(I −G+G)]+y = By is also a LUE for Aβ under Gβ = 0.
By (2) of 2 we show A(I −G+G) = BX(I −G+G).
Note that by the definition of Aβ̂, B = A[X(I −G+G)]+.
By Remark (iii) in (2) of 1, B = A(I −G+G)[X(I −G+G)]+.
By A(I −G+G) = LX(I −G+G), B = LHH+ where H = X(I −G+G).
By A(I −G+G) = LX(I −G+G) again,

BX(I −G+G) = BH = LHH+H = LH = LX(I −G+G) = A(I −G+G).

Finally, we show Cov(Ly)− Cov(By) ≥ 0.

Cov(Ly)− Cov(By) = σ2LL′ − σ2BB′

= σ2LL′ − σ2LHH+L′ = σ2L(I −HH+)L′

= [σL(I −HH+)][σL(I −HH+)]′ ≥ 0
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L05: Generalized least square estimators

1. Generalized least square estimators

Consider linear model y = Xβ + e with E(e) = 0.

(1) A general metric system

With positive definite D ∈ Rn×n for x, y ∈ Rn ⟨x, y⟩D = y′Dx is an inner product with
norm ∥x∥D =

√
⟨x, x⟩D =

√
x′Dx.

When D = I, ⟨x, y⟩ = y′x is popular Frobenius inner product with induced Frobenius
norm ∥x∥ =

√
⟨x, x⟩ =

√
xx. Thus ⟨·, ·∠D is a general inner product.

(2) Relations

⟨x, y⟩D and ∥x∥2D can be expressed via Frobenius inner product and Frobenius norm.
⟨x, y⟩D = y′Dx = (D1/2y)′(D1/2x) = ⟨D1/2x, D1/2y⟩ and ∥x∥2D = ∥D1/2x∥2.

(3) Generalized least square estimators (GLSE)

β̂ is a generalized least square estimaotor (GLSE) with respect to ⟨·, ·⟩D
def⇐⇒ ∥y −Xβ̂∥2D ≤ ∥y −Xβ∥2D for all β.

(4) The collection of all GLSEs

Let GLSED(β) be the collection of all GLSEs for β with respect to ⟨·, ·⟩D.
Then GLSED(β) = (D1/2X)+(D1/2y) +N (X).

Proof β̂ ∈ GLSED(β)
def⇐⇒ ∥y −Xβ̂∥2D ≤ ∥y −Xβ∥2D for all β

⇐⇒ ∥D1/2y −D1/2Xβ̂∥2 ≤ ∥D1/2y −D1/2Xβ∥2 for all β

⇐⇒ D1/2Xβ̂ = π(D1/2y | R(D1/2X))

⇐⇒ D1/2Xβ̂ = (D1/2X)(D1/2X)+(D1/2y)

⇐⇒ D1/2X
[
β̂ − (D1/2X)+(D1/2y)

]
= 0

⇐⇒ β̂ − (D1/2X)+(D1/2y) ∈ N (D−1/2X)

⇐⇒ β̂ ∈ (D1/2X)+(D1/2y) +N (D1/2X)

⇐⇒ β̂ ∈ (D1/2X)+(D1/2y) +N (X).

Comment: GLSEI(β) = X+y+N (X) = LSE(β) also denoted as OLSE(β) for ordinary
LSE.
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2. A subset of LUE(Aβ).

Consider y = Xβ + e with E(e) = 0.

(1) Recall: Aβ is estimable ⇐⇒ A = LX for some L.
Ly is a LUE for Aβ ⇐⇒ A = LX.

(2) A Lemma
If Aβ is estimable, then (i) A ·GLSED(β) =

{
A(D1/2X)+(D1/2y)

}
.

(ii) A(D1/2X)+(D1/2y) ∈ LUE(Aβ).

Proof Aβ is estimable ⇐⇒ there esists L such that A = LX.

(i) By A = LX,

A ·GLSED(β) = A
{
(D1/2X)+(D1/2y) +N (X)

}
= A(D1/2X)+(D1/2y) +AN (X) = A(D1/2X)+(D1/2y) + LXN (X)

= A(D1/2X)+(D1/2y) + {0} =
{
A(D1/2X)+(D1/2y)

}
.

(ii) By A = LX, A(D1/2X)+(D1/2y) = By with

B = A(D1/2X)+D1/2 = LX(D1/2X)+D1/2 = LD−1/2(D1/2X)(D1/2X)+D1/2.

For By ∈ LUE(Aβ) we show A = BX.
BX = LD−1/2(D1/2X)(D1/2X)+(D1/2X) = LD−1/2(D1/2X) = LX = A.

(3) A subset of LUE(Aβ)
By (2) for estimable Aβ,

{A(D1/2X)+(D1/2y : D ∈ Rn×n is positive definite} ⊂ LUE(Aβ).

3. BLUE
Consider y = Xβ + e, e ∼ (0, σ2V ).

(1) Definition for BLUE
For estimable Aβ, By is BLUE if By ∈ LUE(Aβ) and Cov(By) ≤ Cov(Ly) for all Ly ∈
LUE(Aβ).

(2) Theorem
For estimable Aβ in model y = Xβ + e, e ∼ (0, σ2V ), A(V −1/2X)+(V −1/2y) is BLUE.

Proof By (3) of 2, with D = V −1, A(V −1/2X)+(V −1/2y) ∈ LUE(Aβ).
Suppose Ly is also a LUE for Aβ. Then A = LX. We need to show

Cov(A(V −1/2X)+(V −1/2y)) ≤ Cov(Ly).

Cov(Ly) = σ2LV L′ = σ2(LV 1/2)(LV 1/2)′.
Write A(V −1/2X)+(V −1/2y) = By. By A = LX,

B = A(V −1/2X)+V −1/2 = LX(V −1/2X)+V −1/2

= LV 1/2(V −1/2X)(V −1/2X)+V −1/2 = (LV 1/2)HH+

where H = V −1/2X. So Cov(By) = σ2BB′ = σ2(LV 1/2)HH+(LV 1/2)′. Thus

Cov(Ly) = Cov(By) = σ2(LV 1/2(I −HH+)(LV 1/2)′

= [σ(LV 1/2)(I −HH+)][σ(LV 1/2)(I −HH+)]′ ≥ 0.
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