
L02: Estimable parameter functions

1. Estimable parameter functions

(1) Estimable parameter functions
Recall: In linear model y = Xβ + e, e ∼ (0, σ2In)

Aβ is estimable
def⇐⇒ Aβ has a linear unbiased estimator ⇐⇒ A = LX for some L
⇐⇒ A · LSE(β) contains a unique estimator
=⇒ The unique A · LSE(β) = AX+y is the BLUE for Aβ.

(2) Xβ
E(y) = Xβ is always estimable since X = InX. Thus X · LSE(β) = {XX+y} and
XX+y is the BLUE for Xβ.
Xβ is the essential estimable parameter function since

Aβ is estimable ⇐⇒ Aβ is a linear function of Xβ

⇒: If Aβ is estimable, then A = LX for some L. So Aβ = LXβ is a linear function of
Xβ.

⇐: If Aβ is a linear function of X = beta, then Aβ = LXβ for some L and all β. So
A = LX for some L. Hence Aβ is estimable.

(3) β

β is estimable ⇐⇒ Ip = LX for some L ⇐⇒ X has a left-inverse
⇐⇒ X has full column rank ⇐⇒ N(X) = {0}
⇐⇒ LSE(β) = {X+y} = {(X ′X)−1X ′y}.

The above condition is the most restricted one. Under that condition Aβ is estimable
for all A since A · LSE(β) contains a unique estimator. This unique vector is the BLUE
for Aβ.

Ex1: For regression y = Xβ + e, e ∼ (0, σ2In) where X has full column rank. There is
one and only one LSE for β, β̂ = X+y = (X ′X)−1X ′y. All Aβ are estimable with
BLUE AX+y = A(X ′X)−1X ′y.

2. Estimable functions in One-way ANOVA

(1) One-way ANOVA

y = Mµ + e, e ∼ (0, σ2In) is one-way ANOVA model where µ =

µ1
...
µp

 contains the

mean response to p treatments due to p levels of a factor. M = (mij)n×p where

mij =

{
1, yi is the response to the jth treatment with mean µj

0, otherwise

M =

1n1 · · · 0
...

. . .
...

0 · · · 1np

 ∈ Rn×p for example.
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(2) BLUE of µ
With response to all levels, M has full column rank and hence µ̂ = M+y = (M ′M)−1M ′y
is BLUE for µ.

Note that M ′M = diag(n1, .., np), (M
′M)−1 = diag(1/n1, .., 1/np), M

′y =

y1.
...
yp.

. Here

yi. is the summation of all responses to the treatment i. Hence ŷ =

y1
...
yp

.

(3) BLUE of θ

Let µi = µ. + αi with α1 + · · · + αp = 0. Then α =

α1
...
αp

 is called the factor effects.

It can be shown that µ. =
µ1+···+µp

p and αi = µi − µ.. This process can be written as

θ =

(
µ.

α

)
= Aµ.

Then θ = Aµ is estimable with BLUE θ̂ = Aµ̂. Specifically µ̂. =
y1+···+yp

p and α̂i =
yi − µ̂..

3. Estimable functions in Two-way ANOVA with interactions

(1) Two-way ANOVA
With factor A of a levels and factor B of b levels, y = Mµ+ e, e ∼ (0, σ2In) is two-way
ANOVA model where µ ∈ Rab with components µij , the mean response to the treatment
formed by the combination of ith level of A and jth level of B, i = 1, , , .a; j = 1, ..., b.
Model design matrix M = (mst)n×ab such that

mst =

{
1, ys is the response to the treatment with mean, the tthe component is µ
0, otherwise

(2) BLUE of µ
With response to all treatments, M has full column rank. So µ̂ = M+y = (M ′M)−1M ′y
is BLUE for µ. µ̂ can be obtained by replacing µij in µ by yij .

(3) BLUE of θ
Let µij = µ.. +αi + βj + (αβ)ij with

∑
i αi =

∑
i(αβ)ij = 0 and

∑
j βj =

∑
j(αβ)ij = 0.

Then µ.. =
∑

i

∑
j µij

ab . With µi. =
∑

j µij

b and µ.j =
∑

i µij

a , αi = µi. − µ..,
βj = µ.j − µ.. and (αβ)ij = µij − µi. − µ.j + µ... So with

θ = (µ.., α1, .., αa, β1, .., βb, (αβ)11, .., (αβ)ab)
′ ∈ R1+a+b+ab

there exists A such that θ = Aµ. This θ is estimable with BLUE Aµ̂.

Here µ̂.. =
∑

i

∑
j yij

ab . With µ̂i. =
∑

j yij
b and µ̂.j =

∑
i yij
a , α̂i = µ̂i. − µ̂.., β̂j = µ̂.j − µ̂..

and (̂αβ)ij = µ̂ij − µ̂i. − µ̂.j + µ̂...
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L03: Conditional LSE

1. Sufficient and necessary conditions for estimability

(1) Sufficient and necessary conditions for estimability
In y = Xβ + e, e ∼ (0, σ2In) for the estimability of Aβ, besides A = LX for some L,
there are other sufficient and necessary conditions. Here we claim that
the followings are equivalent.

(i) Aβ is estimable

(ii) R(A′) ⊂ R(X ′)

(iii) R[(A′, X ′)] = R(X ′)

(iv) rank

[(
A
X

)]
= rank(X)

(2) Proofs

(i)⇒(ii): Aβ is estimable=⇒ A = LX for some L =⇒ A′ = X ′L′ for some L.
So R(A′) ⊂ R(X ′).

(ii)⇒(iii): First, R(X ′) ⊂ R[(A′, X ′)].
Under (ii) R(A′) ⊂ R(X ′), R[(A′, X ′)] = R(A′) +R(X ′) ⊂ R(X ′).
So R[(A′, X ′)] = R(X ′).

(iii)⇒(iv): If R[(A′, X ′)] = R(X ′), then dim[R[(A′, X ′)]] = dim[R(X ′)].

So rank[(A′, X ′)] = rank(X ′), i.e., rank

[(
A
X

)]
= rank(X).

(iv)⇒(i): Suppose rank

[(
A
X

)]
= rank(X) = r. Then there exists a sub-matrix of X

that contains r linearly independent rows of X such that other rows of

(
A
X

)
are

linear combinations of these r rows. Let PX be this sub-matrix. All rows of A are
linear combinations of the r rows of this sum-matrix. So A = QPX, i.e.,A = LX
for some L. Hence Aβ is estimable.

2. Linear model under a linear restriction

(1) Linear model under linear restriction
Consider linear model y = Xβ + e, e ∼ (0, σ2In) under the restriction Gβ = 0.
Note that

Gβ = 0 ⇐⇒ β ∈ N (G) = N (G+G) = R(I −G+G).

So β is confined in a linear space of Rp. Hence we call it a linear restriction.

(2) Restricted linear unbiased estimator
Ly is a linear unbiased estimator for Aβ under the restriction Gβ if E(Ly) = Aβ for all
β satisfying Gβ = 0. So
Ly is a restricted linear unbiased estimator if and only if (L−AX)(I −G+G) = 0.
Proof Ly is a restricted linear unbiased estimator under Gβ = 0

⇐⇒ E(Ly) = Aβ for all β satisfying Gβ = 0
⇐⇒ LXβ = Aβ for all β ∈ R(I −G+G)
⇐⇒ (LX −A)β = 0 for β = (I −G+G)γ for all γ
⇐⇒ (A− LX)(I −G+G)γ = 0 for all γ ⇐⇒ (A− LX)(I −G+G) = 0
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(3) Restricted estimable parameter functions
Aβ is estimable under the restriction Gβ = 0 if Aβ has one linear unbiased estimator
under the restriction Gβ = 0.
So Aβ is estimable under the restriction Gβ = 0 if and only if (A− LX)(I −G+G) = 0
for some L.

3. Restricted least square estimators

(1) Definition

β̂ is a least square estimator (LSE) for β under Gβ = 0
def⇐⇒ Gβ̂ = 0 and ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β satisfying Gβ = 0.

(2) The collection of all LSE under Gβ = 0.
The collection of all LSE for β under Gβ = 0 is

[X(I −G+G)]+y +N (X) ∩N (G).

Proof β̂ is a LSE for β under Gβ = 0

⇐⇒ Gβ̂ = 0 and ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β satisfying Gβ = 0

⇐⇒ β̂ ∈ N (G) and Xβ̂ = π(y|R(X(I −G+G)))

⇐⇒ β̂ ∈ N (G) and Xβ̂ = [X(I −G+G)][X(I −G+G)]+y

⇐⇒ β̂ ∈ N (G) and β̂ ∈ (I −G+G)[X(I −G+G)]+y +N (X)

⇐⇒ β̂ ∈ N (G) ∩ {(I −G+G)[X(I −G+G)]+y +N (X)}

⇐⇒ β̂ ∈ (I −G+G)[X(I −G+G)]+y +N (X) ∩N (G)

⇐⇒ β̂ ∈ [X(I −G+G)]+y +N (X) ∩N (G)
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