
L01 Least square estimators

1. LSE(β)

(1) LSE of β
In linear model y = Xβ + e with random error e = y −Xβ ∼ (0, σ2In),
∥e∥2 =

∑n
i=1 e

2
i = ∥y −Xβ∥2 = Q(β).

β̂ is a least square estimator (LSE) for β ⇐⇒ Q(β̂) ≤ Q(β) ∀β ∈ Rp

⇐⇒ ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 ∀β ⇐⇒ Xβ̂ = π(y|R(X))

⇐⇒ Xβ̂ = XX+y (Projection equation)

⇐⇒ X ′Xβ̂ = X ′y (Normal equation)

(2) LSE(β)
Let LSE(β) be the collection of all LSEs of β. Then LSE(β) = X+y +N (X).

Proof β̂ ∈ LSE(β) ⇐⇒ Xβ̂ = XX+y ⇐⇒ X(β̂ −X+y) = 0

⇐⇒ β̂ −X+y ∈ N (X) ⇐⇒ β̂ ∈ X+y +N (X).

(3) Minimum norm LSE for β
X+y is the minimum norm LSE for β.

Proof X+y = X+y + 0 ∈ X+y +N (X) = LSE(β)
For β̂ ∈ LSE(β) = X+y +N (X), β̂ = X+y + Z where Z ∈ N (X).
But ⟨X+y, Z⟩ = Z ′X+y = Z ′X+XX+y = (XZ)′(X+)′X+y = 0.
So ∥β̂∥2 = ∥X+y∥2 + ∥Z∥2 ≥ ∥X+y∥2.

Ex1: A special case
X ∈ Rn×p has full column rank ⇐⇒ dim[N (X)] = p− rank(X) = 0 ⇐⇒ N (X) = {0}

⇐⇒ LSE(β) = {X+y}.
Ex2: (X ′X)−X ′y ⊂ LSE(β).

β̂ ∈ (X ′X)−X ′y =⇒ Xβ̂ = X(X ′X)−X ′y = XX+y =⇒ β̂ ∈ LSE(β).

Comment: LSE(β) ⊂ (X ′X)−X ′y is not true, i.e., X+y+N (X) ⊂ (X ′X)−X ′y is not true.
We only need to see the inclusion is not true when y = 0, i.e., N(X) ⊂ {0} is not true.
Hence Theorem 5.1.1 on p150 is false.

2. LUE(Aβ)

(1) LUE(Aβ)

γ̂ is a linear unbiased estimator (LUE) for Aβ
def⇐⇒ γ̂ = Ly and E(Ly) = Aβ ∀β
⇐⇒ γ̂ = Ly, LX = A.

Let LUE(Aβ) be the collection of all LUEs for Aβ. Then LUE(Aβ) = {Ly : LX = A}.
(2) Estimable Aβ

Aβ is estimable
def⇐⇒ LUE(Aβ) ̸= ∅ ⇐⇒ A = LX for some L
∗⇐⇒ A · LSE(β) = {AX+y}

∗⇒: A = LX =⇒ A · LSE(β) = AX+y +AN (X) = AX+y + LXN (X) = {AX+y}.
∗⇐: A·LSE(β) = AX+y =⇒ AN (X) = {0} =⇒ AR(I−X+X) = R[A(I−X+X)] = {0}

So 0 = dim[R(A−AX+X)] = rank(A−AX+X) =⇒ A = AX+X.
Hence A = LX for some L.
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(3) LSE(Aβ)
For estimable Aβ, define the LSE of Aβ as LSE(Aβ) = A · LSE(β) = AX+y.
Then LSE(Aβ) ∈ LUE(Aβ).

Proof Aβ is estimable. Then LX = A for some L.
So LSE(Aβ) = AX+y = LXX+y with LXX+X = LX = A.
Thus AX+y ∈ LUE(Aβ).

Ex3: β is estimable ⇐⇒ Aβ is estimable for all A.

⇒: If β is estimable, then Ip = LX for some L. So X has left-inverse XL.
Thus for all A ∈ Rq×p, A = AXLX = LX for some L. Hence Aβ is estimable.

⇐: Aβ is estimable for all A. Then β = Ipβ is estimable.

3. BLUE of estimable Aβ

(1) BLUE
For γ̂, an estimator for γ, rγ̂ = E[(γ̂ − γ)(γ̂ − γ)′] is a risk function.
If γ̂ is an unbiased estimator for γ, then rγ̂ = Cov(γ̂).
γ̂ is a best linear unbiased estimator (BLUE) for γ by the above risk
if γ̂ ∈ LUE(γ) and Cov(γ̂) ≤ Cov(η̂) for all η̂ ∈ LUE(γ). Here the inequality means that
Cov(η̂))− Cov(γ̂) is non-negative definite.

(2) Theorem
If Aβ is estimable, then LUE(Aβ) = AX+y is a BLUE for Aβ.

Proof AX+y ∈ LUE(Aβ). If Ly ∈ LUE(Aβ), then A = LX.
So Cov(Ly)− Cov(AX+y) = σ2L(I −XX+)L′ = Cov(L(I −XX+)y) ≥ 0.

(3) Uniqueness
If Ly is also a BLUE for Aβ, then Ly = AX+y.

Proof If Ly is also BLUE for Aβ, then Cov(Ly)−Cov(AX+y) = σ2L(I−XX+)L′ ≥ 0
and Cov(AX+y)−Cov(Ly) = −σ2L(I−XX+)L′ ≥ 0. Hence σ2L(I−XX+)L′ = 0.
Thus L = LXX+ = AX+. Therefore Ly = AX+y.
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