

1. 1 on p223

In linear model $y = X\beta + e$, $X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Show that $c_1\beta_1 + c_2\beta_2 + c_3\beta_3$ is estimable if and only if $c_1 = c_2 + c_3$.

Hint: With $c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, show that $c_1 = c_2 + c_3 \iff c' = LX$ for some L .

2. 2. p223

In $y = X\beta + e$, $\beta \in R^p$. Let $H = \begin{pmatrix} h'_{(i)} \\ \vdots \\ h'_{(p-1)} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{pmatrix} \in R^{(p-1) \times p}$, $1_p \in R^p$

and $c = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix} \in R^p$. Show that

$$H\beta \text{ is estimable} \iff "1'_p c = 0 \implies c'\beta \text{ is estimable}"$$

Hint: $\mathcal{N}(1'_p)$ has dimension $p - 1$.

But $h_{(i)} \in \mathcal{N}(1'_p)$ and $h_{(1)}, \dots, h_{(p-1)}$ are linearly independent.

So $[h_{(1)}, \dots, h_{(p-1)}]$ is a basis of $\mathcal{N}(1'_p)$. Hence $\mathcal{N}(1'_p) = \mathcal{R}(H')$.