L24 Two-way ANOVA without interactions

- 1. Two-way ANOVA without interactions using μ
 - (1) Two-way ANOVA without interactions using μ $y = \mu_{ij} + \epsilon$, i = 1, ..., a; j = 1, ..., b is two-way ANOVA model. Under the restrictions

$$\mu_{i_1j_1} + \mu_{i_2j_2} = \mu_{i_1j_2} + \mu_{i_2j_1}$$
 for all i and j

it becomes a two-way ANOVA model without interactions. This model is reduced from two-way ANOVA by the hypothesis H_0 that specifies the restrictions.

- (2) Equivalent forms of the restrictions
 - (a) $\mu_{i_1j_1} + \mu_{i_2j_2} = \mu_{i_1j_2} + \mu_{i_2j_1}$ for all i_1, i_2, j_1 and j_2
 - (b) $\mu_{11} + \mu_{ij} = \mu_{1j} + \mu_{i1}$ for all *i* and all *j*
 - (c) $\mu_{11} + \mu_{ij} = \mu_{1j} + \mu_{i1}$ for all $i \neq 1$ and $j \neq 1$ are equivalent.

Proof $(a) \Longrightarrow (b) \Longrightarrow (c)$ are trivial.

- (b) \Leftarrow (c): If i = 1, then $\mu_{11} + \mu_{ij} = \mu_{11} + \mu_{1j}$ and $\mu_{1j} + \mu_{i1} = \mu_{1j} + \mu_{11}$ are equal. If j = 1, then $\mu_{11} + \mu_{ij} = \mu_{11} + \mu_{i1}$ and $\mu_{1j} + \mu_{i1} = \mu_{11} + \mu_{i1}$ are equal. If $i \neq 1$ and $j \neq 1$, by (c), $\mu_{11} + \mu_{ij} = \mu_{1j} + \mu_{i1}$.
- (a) \Leftarrow (b): By (b) $\mu_{i_1j_1} + \mu_{i_2j_2} = (\mu_{1j_1} + \mu_{i_11} - \mu_{11}) + (\mu_{1j_2} + \mu_{i_21} - \mu_{11})$ $= \mu_{1j_1} + \mu_{1j_2} + \mu_{i_11} + \mu_{i_21} - 2\mu_{11}$ and $\mu_{i_1j_2} + \mu_{i_2j_1} = (\mu_{1j_2} + \mu_{i_11} - \mu_{11}) + (\mu_{1j_1} + \mu_{i_21} - \mu_{11})$ $= \mu_{1j_1} + \mu_{1j_2} + \mu_{i_11} + \mu_{i_21} - 2\mu_{11}$ are equal.
- (3) a + b 1 populations In two-way ANOVA

$$y = \mu_{ij} + \epsilon = (r_1, ..., r_a)M \begin{pmatrix} c_1 \\ \vdots \\ c_b \end{pmatrix} + \epsilon = [(c_1, ..., c_b) \otimes (r_1, ..., r_a)] \operatorname{vec}(M) + \epsilon$$

$$= mu + \epsilon$$

 $\mu = \text{vec}(M)$ has ab free components. The restriction (c) in (2) contains (a-1)(b-1) equations that reduce the number of free components in μ to ab-(a-1)(b-1)=a+b-1. Thus two-way ANOVA without interactions represents a+b-1 populations.

- 2. Two-way ANOVA without interactions using θ
 - (1) The no-interaction hypothesis In two-way ANOVA

$$y = \mu_{..} + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon \text{ under } \sum_i \alpha_i = 0, \sum_j \beta_j = 0,$$
$$\sum_i (\alpha \beta)_{ij} = 0 \text{ and } \sum_j (\alpha \beta)_{ij} = 0,$$

the no interaction hypothesis

$$H_0: \mu_{i_1j_1} + \mu_{i_1j_2} = \mu_{i_1j_2} + \mu_{i_2j_1} \text{ for all } i_1, i_2, j_1, j_2$$

 $\iff H_0: (\alpha\beta)_{ij} = 0 \text{ for all } i \text{ and all } j$

Proof
$$\Leftarrow$$
: If $(\alpha\beta)_{ij} = 0$ for all i and j , then

$$\mu_{i_1j_1} + \mu_{i_1j_2} = (\mu_{..} + \alpha_{i_1} + \beta_{j_1}) + (\mu_{..} + \alpha_{i_1} + \beta_{j_2})$$

and $\mu_{i_1j_2} + \mu_{i_2j_1} = (\mu_{..} + \alpha_{i_1} + \beta_{j_2}) + (\mu_{..} + \alpha_{i_2} + \beta_{j_1})$
are equal for all i_1, i_2, j_1 and j_2 .

$$\Rightarrow$$
: If $\mu_{i_1j_1} + \mu_{i_1j_2} = \mu_{i_1j_2} + \mu_{i_2j_1}$ for all i_1, i_2, j_1, j_2 , by $\mu_{ij} = \mu_{..} + \alpha_i + \beta_j + (\alpha\beta)_{ij}$,

$$(\mu_{..} + \alpha_{i_1} + \beta_{j_1} + (\alpha \beta)_{i_1 j_1}) + (\mu_{..} + \alpha_{i_2} + \beta_{j_2} + (\alpha \beta)_{i_2 j_2})$$

= $(\mu_{..} + \alpha_{i_1} + \beta_{j_2} + (\alpha \beta) + i_1 j_2) + (\mu_{..} + \alpha_{i_2} + \beta_{j_1} + (\alpha \beta)_{i_2 j_1}),$

i.e., $(\alpha\beta)_{i_1j_1} + (\alpha\beta)_{i_2j_2} = (\alpha\beta)_{i_1j_2} + (\alpha\beta)_{i_2j_1}$ for all i_1, i_2, j_1, j_2 . By the summation of two sides over all $i_1 = 1, ..., a$,

$$0 + a(\alpha\beta)_{i_2j_1} = 0 + a(\alpha\beta)_{i_2j_2}$$
 for all i_2, j_1, j_2 .

Thus $(\alpha\beta)_{ij}$ are equal on all rows over all j with a common value 0.

(2) Two-way ANOVA without interactions

Two-way ANOVA without interactions can be expressed as

$$y = \mu_{\cdot \cdot} + \alpha_i + \beta_j + \epsilon = mA_*\theta_* + \epsilon$$
 under $G_*\theta_* = 0$

where
$$\theta_* = \begin{pmatrix} \mu_{\cdot \cdot} \\ \alpha \\ \beta \end{pmatrix}$$
, $A_* = (1_b \otimes 1_a, 1_b \otimes I_a, I_b \otimes 1_a)$ and $G_* = \begin{pmatrix} 0 & 1_a' & 0 \\ 0 & 0 & 1_b' \end{pmatrix}$

Proof Two-way ANOVA is

$$y = \mu_{i} + \alpha_{i} + \beta_{j} + (\alpha \beta)_{ij} + \epsilon = mA\theta + \epsilon \text{ under } G\theta = 0$$

where
$$\theta = \begin{pmatrix} \mu_{..} \\ \alpha \\ \beta \\ h \end{pmatrix}$$
, $A = (1_b \otimes 1_a, 1_b \otimes I_a, I_b \otimes I_a, I_b \otimes I_a)$ and $G = \begin{pmatrix} 0 & 1'_a & 0 & 0 \\ 0 & 0 & 1'_b & 0 \\ 0 & 0 & 0 & I_b \otimes 1'_a \\ 0 & 0 & 0 & 1'_b \otimes I_a \end{pmatrix}$.
But under no-interaction H_0 , $A\theta = A_*\theta_*$ and $G\theta = 0 \iff G_*\theta_* = 0$ with

$$\theta_* = \begin{pmatrix} \mu_{\cdot \cdot} \\ \alpha \\ \beta \end{pmatrix}, A_* = (1_b \otimes 1_a, 1_b \otimes I_a, I_b \otimes 1_a) \text{ and } G_* = \begin{pmatrix} 0 & 1_a' & 0 \\ 0 & 0 & 1_b' \end{pmatrix}.$$

(3) a+b-1 populations

In $y = mA_*\theta_* + \epsilon$, θ_* has 1 + a + b components. But with two restrictions $\sum_i \alpha_i = 0$ and $\sum_{i} \beta_{i} = 0$ in $G_{*}\theta_{*} = 0$, the number of free components are (a+b+1)-2 = a+b-1. Thus two-way ANOVA without interaction represents a + b - 1 populations.

3. Samples

With observed
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \ \theta_* = \begin{pmatrix} \mu_{\cdot \cdot} \\ \alpha \\ \beta \end{pmatrix} \in \mathbb{R}^{1+a+b}, \ A^*\theta_* \ \text{loads} \ \mu_{\cdot \cdot} + \alpha_i + \beta_j \ \text{to ab}$$

cells. $M = \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} \in R^{n \times (ab)}$ where m_k matches y_k to its cell and $MA_*\theta_*$ loads the right

$$Y = MA_*\theta_* + \epsilon$$
, $E(\epsilon) = 0 \in \mathbb{R}^n$, under $G_*\theta_* = 0$.