L23 Linear model: Two-way ANOVA

1. Two-way ANOVA

(1) Populations

In an experiment Factor A with a levels and factor B with b levels produce ab treatments. Response y to treatments form ab populations.

$$y = \mu_{ij} + \epsilon$$
 with $E(\epsilon) = 0, i = 1, ..., a; j = 1, ..., b$

Let
$$M = \begin{pmatrix} \mu_{11} & \cdots & \mu_{1b} \\ \vdots & \ddots & \vdots \\ \mu_{a1} & \cdots & \mu_{ab} \end{pmatrix}$$
 with $\mu = \text{vec}(M)$; $r_i = \begin{cases} 1 & y \text{ is response under level } i \text{ of A} \\ 0 & \text{otherwise} \end{cases}$ is indicator for level i of A and $c_j = \begin{cases} 1 & y \text{ is response under level } j \text{ of B} \\ 0 & \text{otherwise} \end{cases}$ is the indicator for level i of A and A and

tor for level j of B. So in $m = (c_1, ..., c_b) \otimes (r_1, ..., r_a)$ the component $r_i c_j$ is the indicator for treatment (i, j). Then

$$y = (r_1, ..., r_a)M\begin{pmatrix} c_1 \\ \vdots \\ c_b \end{pmatrix} + \epsilon = [(c_1, ..., c_b) \otimes (r_1, ..., r_a)] \operatorname{vec}(M) + \epsilon = m\mu + \epsilon$$

This model gives ab populations.

(2) Samples

 $y_1, ..., y_n$ is a random sample where y_i is observed when $m = m_i$.

Let
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
, $D = \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} \in \mathbb{R}^{n \times ab}$. Then $Y = D\mu + \epsilon$ with $E(\epsilon) = 0 \in \mathbb{R}^n$.

Matrix D matches y_i to its treatment and is called the design matrix.

2. Re-parameterization

(1) Introducing θ

With $\mu_{.j} = \frac{\sum_{i} \mu_{ij}}{a}$, $\mu_{i.} = \frac{\sum_{j} \mu_{ij}}{b}$, $\mu_{..} = \frac{\sum_{i} \sum_{j} \mu_{ij}}{ab}$, let $\alpha_{i} = \mu_{i.} - \mu_{..}$, $\beta_{j} = \mu_{.j} - \mu_{..}$ and $(\alpha\beta)_{ij} = \mu_{ij} - \mu_{..} - \alpha_{i} - \beta_{j}$. With $H = ((\alpha\beta)_{ij})_{a \times b}$ and h = vec(H), introducing

$$\theta = \begin{pmatrix} \mu_{..} \\ \alpha \\ \beta \\ h \end{pmatrix} \in R^{1+a+b+ab} \text{ where } \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_a \end{pmatrix} \text{ and } \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_b \end{pmatrix} \in R^b.$$

(2)
$$\mu = A\theta$$
 with $A = (1_b \otimes 1_a, 1_b \otimes I_a, I_b \otimes 1_a, I_b \otimes I_a) \in \mathbb{R}^{ab \times (1+a+b+ab)}$

Proof Note that
$$M = (\mu_{ij})_{a \times b} = (\mu_{..} + \alpha_i + \beta_j + (\alpha\beta)_{ij})_{a \times b}$$
$$= 1_a \mu_{..} 1'_b + I_a \alpha 1'_b + 1_a \beta' I_b + I_a H I_b.$$

$$= 1_{a}\mu_{..}1'_{b} + I_{a}\alpha 1'_{b} + 1_{a}\beta' I_{b} + I_{a}H.$$
So $\mu = \text{vec}(M) = (1_{b} \otimes 1_{a})\mu_{..} + (1_{b} \otimes I_{a})\alpha + (I_{b} \otimes 1_{a})\beta + (I_{b} \otimes I_{a})h$

$$= (1_{b} \otimes 1_{a}, 1_{b} \otimes I_{a}, I_{b} \otimes 1_{a}, I_{b} \otimes I_{a}) \begin{pmatrix} \mu_{..} \\ \alpha \\ \beta \\ h \end{pmatrix} = A\theta.$$

(3) Restrictions
$$G\theta = 0$$
 with $G = \begin{pmatrix} 0 & 1'_a & 0 & 0 \\ 0 & 0 & 1'_b & 0 \\ 0 & 0 & 0 & I_b \otimes 1'_a \\ 0 & 0 & 0 & 1'_b \otimes I_a \end{pmatrix} \in R^{(2+a+b)\times(1+a+b+ab)}$

$$\begin{aligned} & \textbf{Proof In } \theta, \sum_{i} \alpha_{i} = \sum_{i} (\mu_{i.} - \mu_{..}) = 0, \text{ i.e., } 1'_{a}\alpha = 0; \\ & \sum_{j} \beta_{j} = \sum_{j} (\mu_{.j} - \mu_{..}) = 0, \text{ i.e., } 1'_{b}\beta = 0; \\ & \sum_{i} (\alpha\beta)_{ij} = \sum_{i} (\mu_{ij} - \mu_{..} - \alpha_{i} - \beta_{j}) = a\mu_{.j} - a\mu_{..} - 0 - a(\mu_{.j} - \mu_{..}) = 0. \text{ Equivalently } \\ & 1'_{a}H = 0, \text{ i.e., } (I_{b} \otimes 1'_{a})h = 0; \\ & \sum_{j} (\alpha\beta)_{ij} = \sum_{j} (\mu_{ij} - \mu_{..} - \alpha_{i} - \beta_{j}) = b\mu_{i.} - b\mu_{..} - b(\mu_{i.} - \mu_{..}) - 0 = 0. \text{ Equivalently } \\ & H1_{b} = 0, \text{ i.e., } (1'_{b} \otimes I_{a})h = 0. \end{aligned}$$

$$\text{Thus } 0 = \begin{pmatrix} 0 & 1'_{a} & 0 & 0 \\ 0 & 0 & 1'_{b} & 0 \\ 0 & 0 & 0 & I'_{b} \otimes I'_{a} \\ 0 & 0 & 0 & 1'_{b} \otimes I_{a} \end{pmatrix} \begin{pmatrix} \mu_{..} \\ \alpha \\ \beta \\ h \end{pmatrix} = G\theta.$$

3. Model with restrictions

(1) Equivalent models

For populations $y = m\mu + \epsilon \iff y = mA\theta + \epsilon$ under $G\theta = 0$. For samples $Y = M\mu + \epsilon \iff Y = MA\theta + \epsilon$ under $G\theta = 0$.

(2) Comments

 μ has ab free components. θ has 1+a+b+ab components. Each equation reduces the number free parameters by 1. Among 2+a+b equations in $G\theta=0$, the last is implied by the previous ones. Consequently, in θ there are (1+a+b+ab)-(1+a+b)=ab free components.

Ex:
$$\theta = B\mu$$
 with $B = \begin{pmatrix} (1_b \otimes 1_a)^+ \\ [1_b \otimes (I_a - 11^+)]^+ \\ [(I_b - 11^+) \otimes 1_a]^+ \\ [(I_b - 11^+) \otimes (I_a - 11^+)]^+ \end{pmatrix}$.

$$\begin{aligned} & \left(|(I_b - 11^+) \otimes (I_a - 11^+)|^+ \right) \\ & \textbf{Proof In } \theta = \begin{pmatrix} \mu_{..} \\ \beta \\ h \end{pmatrix}, \ \mu_{..} = \frac{\sum_i \sum_j \mu_{ij}}{ab} = \frac{1'_a M 1_b}{ab} = (1_b^+ \otimes 1_a^+) \mu = (1_b \otimes 1_a)^+ \mu. \\ & \alpha = M \frac{1_b}{b} - 1_a \frac{1'_a M 1_b}{ab} = (I_a - 11^+) M \frac{1_b}{b} = [1_b^+ \otimes (I_a - 11^+)] \mu = [1_b \otimes (I_a - 11^+)]^+ \mu. \\ & \beta' = \frac{1'_a M}{a} - \frac{1'_a M 1_b}{ab} 1'_b = 1_a^+ M (I_b - 11^+). \text{ So } \beta = [(I_b - 11^+) \otimes 1_a^+] \mu = [(I_b - 11^+) \otimes 1_a]^+ \mu. \\ & H = \left((\alpha \beta)_{ij} \right)_{a \times b} = (\mu_{ij} - \mu_{..} - \alpha_i - \beta_j)_{a \times b} = M - 1_a \mu_{..} 1'_b - \alpha 1'_b - 1_a \beta' \\ & = M - 1_a \frac{1'_a M 1_b}{ab} 1'_b - (I_a - 11^+) M \frac{1_b}{b} 1'_b - 1_a 1_a^+ M (I_b - 11^+) \\ & = M + 1_a 1_a^+ M 1_b 1_b^+ - M 1_b 1_b^+ - 1_a 1_a^+ M = (I_a - 11^+) M (I_b - 11^+) \\ & \text{So } h = [(I_b - 11^+) \otimes (I_a - 11^+)] \mu = [(I_b - 11^+) \otimes (I_a - 11^+)]^+ \mu. \end{aligned}$$

$$\text{Therefore } \theta = \begin{pmatrix} (1_b \otimes (I_a - 11^+)) \mu = [(I_b - 11^+) \otimes (I_a - 11^+)] \mu \\ & [(I_b \otimes (I_a - 11^+)] \mu \\ & [(I_b - 11^+) \otimes (I_a - 11^+)]^+ \\ & [(I_b - 11^+) \otimes (I_a - 11^+)]^+ \end{pmatrix} \mu = B \mu. \end{aligned}$$