L22 Linear model: Regression and one-way ANOVA

1. Linear model

(1) Linear function

y = f(x) is a linear function if $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$.

If $y \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$, then

y = f(x) is a linear function $\iff \exists A \in \mathbb{R}^{m \times n}$ such that y = f(x) = Ax.

Pf: \Leftarrow : $f(\alpha u + \beta v) = A(\alpha u + \beta v) = \alpha Au + \beta Av = \alpha f(u) + \beta f(v)$.

 \Rightarrow : Let $A_i = f(e_i) \in R^m$ where $e_i \in R^n$ is the *i*th column of I_n , i = 1, ..., n. Then $f(x) = f(x_1e_1 + \cdots + x_ne_n) = x_1f(e_1) + \cdots + x_nf(e_n)$

 $= x_1 A_1 + \cdots + x_n A_n = A_n$

(2) Linear model

If in a model for random variable y, E(y) is a linear function of unknown parameter vector $\beta \in \mathbb{R}^p$, then this model is called a linear model. So a linear model for y with parameter vector $\beta \in \mathbb{R}^p$ is

$$y = (m_1, ..., m_p)\beta + \epsilon$$
 with $E(\epsilon) = 0$.

(3) Samples from a linear model

Suppose $y_1, ..., y_n$ is a random sample from the above linear model where y_i is observed

when
$$(m_1, ..., m_p) = (m_{i1}, ..., m_{in})$$
. Let $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $M = \begin{pmatrix} m_{11} & \cdots & m_{1p} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{np} \end{pmatrix}$. Then $Y = M\beta + \epsilon$ with $E(\epsilon) = 0 \in \mathbb{R}^n$ characterizes a linear model based on sample

 $Y = M\beta + \epsilon$ with $E(\epsilon) = 0 \in \mathbb{R}^n$ characterizes a linear model based or

Comments: Statistical inference is based on sample $Y = M\beta + \epsilon$.

 $E(Y) = M\beta \in L(M)$, a linear space in \mathbb{R}^n .

Matrix M characterizes the model, i.e., different M gives different models.

- 2. Linear regression model is a linear model
 - (1) Regression model

Linear regression $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_{p-1} x_{p-1} + \epsilon$ with $E(\epsilon) = 0$ is a linear model where

$$E(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} = (1, x_1, \dots x_{p-1})\beta \text{ with } \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$$

is called the regression function.

Comments: Regression model represents infinite number of populations,

Caustion: E(y) is a function of $(1, x_1, ..., x_p)$ and is also a function of $\beta \in \mathbb{R}^p$.

(2) Samples from a regression model

Suppose y_i is observed when $(1, x_1, ..., x_{p-1})$ is $(1, ..., x_{p-1})$

Let
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
, $X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np-1} \end{pmatrix} \in \mathbb{R}^{n \times p}$ and $\epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$ with $E(\epsilon) = 0_n$. Then $Y = X\beta + \epsilon$. So $E(Y) = X\beta$ lines in $\mathcal{R}(X)$, a linear space in \mathbb{R}^n .

3. One-way ANOVA is a linear model

(1) One-way ANOVA model

In an experiment response y is affected by p levels of a single factor.

Suppose under the *i*th level, called the *i*th treatment, $E(y) = \mu_i$.

Let d_i be the indicator for the *i*th treatment, i.e., $d_i = \begin{cases} 1 & \text{ith treatment is applied} \\ 0 & \text{otherwise} \end{cases}$

and
$$\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix}$$
. The one-way ANOVA below is a linear model. $y = d_1 \mu_1 + \dots + d_n \mu_n + \epsilon = (d_1, \dots, d_n) \mu + \epsilon$ with $E(\epsilon) = 0$.

Comments: This model represents p populations since $(d_1,..,d_p)$ with one $d_i=1$ and rest $d_j=0$ has p different values and $(d_1,...,d_p)\mu$ has p values: $\mu_1,...,\mu_p$.

(2) Samples from one-way ANOVA

Suppose y_i is observed on an experiment unit when $(d_1,..,d_p)=(d_{i1},...,d_{ip}), i=1,...,n$.

Let
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
, $D = \begin{pmatrix} d_{11} & \cdots & d_{1p} \\ \vdots & \ddots & \vdots \\ d_{n1} & \cdots & d_{np} \end{pmatrix} \in \mathbb{R}^{n \times p}$ and $\epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$ with $E(\epsilon) = 0$.

Then $Y = Du + \epsilon$, So $E(Y) = Du \in I(D) = D^p$

Comment: Matrix D specifies how many and which experiment units are subject to which treatment. Hence it is called the design matrix.

Ex1:
$$D = \begin{pmatrix} 1_{n_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1_{n_n} \end{pmatrix}$$
 is often denoted by J .

(3) Reparameterization

Let
$$\mu_{\cdot} = \frac{\mu_1 + \dots + \mu_p}{p} = \frac{1_p'}{p} \mu = 1_p^+ \mu$$
, $\alpha_i = \mu_i - \mu_i$ and $\alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_p \end{pmatrix} = (I_p - 1_p 1_p^+) \mu$. Then

$$\theta = \begin{pmatrix} \mu_{\cdot} \\ \alpha \end{pmatrix} = \begin{pmatrix} 1_{p}^{+} \\ I_{p} - 1_{p} 1_{p}^{+} \end{pmatrix} \mu = (1_{p}, I_{p} - 1_{p} 1_{p}^{+})^{+} \mu \in \mathbb{R}^{p+1} \text{ and } \mu = (1_{p}, I_{p}) \theta \in \mathbb{R}^{p}.$$

Here $\alpha_1, ..., \alpha_p$ are called the factor effects. Clearly $\mu_i = \mu_j \iff \alpha_i = \alpha_j$. When using θ there is a restriction $\alpha_1 + \cdots + \alpha_p = 0 \iff (0, 1'_p)\theta = 0$.

(4) A model with restriction

By the reparameterization in (3), for data vector Y

$$Y = J\mu + \epsilon$$
 with $E(\epsilon) = 0 \iff Y = J(1_p, I_p)\theta + \epsilon$ with $E(\epsilon) = 0$ under the restriction $(0, 1'_p)\theta = 0$

Ex2:
$$(0, 1'_p)\theta = 0 \Longleftrightarrow \theta \in \mathcal{N}((0, 1'_p))$$
. So

$$E(Y) = J(1_p, I_p)\theta \in J(1_p, I_p)\mathcal{N}((0, 1'_p)) = J(1_p, I_p)\mathcal{N}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1_p 1_p^+ \end{pmatrix}\right)$$

$$= J(1_p, I_p)\mathcal{R}\left(\begin{pmatrix} 1 & 0 \\ 0 & I_p - 1_p 1_p^+ \end{pmatrix}\right) = J\mathcal{R}\left(\left(1_p, I_p - 1_p 1_p^+ \right)\right)$$

$$= J\mathcal{R}(I_p) = \mathcal{R}(J).$$

2