L20 Population, sample and statistics

- 1. Parameters of population, sample and basic statistics
 - (1) A univariate case

Population:
$$(\mu, \sigma^2)$$
 Sample $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim (\mu 1_n, \sigma^2 I_n).$

Sample mean: An unbiased estimator for μ

$$\overline{X} = \frac{\sum X_i}{n} = \frac{1'_n}{n} X \sim \left(\frac{1'_n}{n} \mu 1_n, \frac{1'_n}{n} \sigma^2 I_n \frac{1_n}{n}\right) = \left(\mu, \frac{\sigma^2}{n}\right).$$

Sample variance: An unbiased estimator for σ

$$s^2 = \frac{\sum (X_i - \overline{X})^2}{n - 1} = \frac{\sum X_i^2 - \frac{1}{n} (\sum_i X_i)^2}{n - 1} = X' \frac{I_n - \frac{1_n 1_n'}{n}}{n - 1} X \text{ where } \frac{1_n 1_n'}{n} = 1_n 1_n^+$$
 has mean $(\mu 1_n)' \frac{I_n - 1_n 1_n^+}{n - 1} (\mu 1_n) + \operatorname{tr} \left(\frac{I_n - 1_n 1_n^+}{n - 1} \sigma^2 I_n \right) = 0 + \sigma^2 = \sigma^2.$

(2) A multivariate case

Sample: $X = (X_1, ..., X_n) \sim (\mu 1'_n, \Sigma, I_n)$. p-dimensional population: (μ, Σ) Sample mean: An unbiased estimator for μ

$$\overline{X} = \frac{\sum X_i}{n} = X \frac{1_n}{n} \sim \left(\mu 1_n' \frac{1_n}{n}, \Sigma, \frac{1_n'}{n} I_n \frac{1_n}{n} \right) = \left(\mu, \Sigma, \frac{1}{n} \right) \sim \left(\mu, \frac{\sigma^2}{n} \right).$$

SSCP (Sum of squares and cross products) matrix: $XX' = (\sum_k X_{ik} X_{jk})_{p \times p}$. CSSCP (Corrected sum of squares and cross products) matrix

(X –
$$\overline{X}1'_n$$
)(X – $\overline{X}1'_n$)' = $\sum_i (X_i - \overline{X})(X_i - \overline{X})' = \sum_i X_i X'_i - \frac{(\sum X_i)(\sum X_i)'}{2} = X (I_n - 1_n 1_n^+) X'$
has mean $(\mu 1'_n) (I_n - 1_n 1_n^+) (\mu 1'_n) + \operatorname{tr} (I_n - 1_n 1_n^+) \Sigma = (n-1)\Sigma$.
Sample variance-covariance matrix $S = \frac{\operatorname{CSSCP}}{n-1}$ is an unbiased estimator for Σ .

- 2. Distributions of population sample and basic statistics
 - (1) A univariate normal population

Population:
$$N(\mu, \sigma^2)$$
 Sample $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu 1_n, \sigma^2 I_n).$

$$\overline{X} = \frac{1'_n}{n}X \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 and $s^2 = X'\frac{I_n - 1_n 1_n^+}{n-1}X$ are independent.

Pf:
$$\left(\frac{1'_n}{n}\right)(\sigma^2 I_n)\left(\frac{I_n - \frac{1_n 1'_n}{n}}{n-1}\right) = 0.$$

Comment: If $X \sim N(\mu, \Sigma)$ and $A\Sigma B = 0$ where B' = B, AX and X'BX indep.

(2) A multivariate normal population

p-dimensional population: $N(\mu, \Sigma)$ Sample: $X = (X_1, ..., X_n) \sim N_{p \times n}(\mu 1'_n, \Sigma, I_n)$. Sample mean $\overline{X} = X \frac{1_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ and CSSCP = $X\left(I_n - 1_n 1_n^+\right) X'$ are independent.

Pf:
$$\left(\frac{1_n}{n}\right)' I_n \left(I_n - 1_n 1_n^+\right) = 0$$
. So $\overline{X} = X \frac{1_n}{n}$ and $X \left(I_n - 1_n 1_n^+\right)$ are independent. Thus \overline{X} and CSSCP = $\left[X \left(I_n - 1_n 1_n^+\right)\right] \left[X \left(I_n - 1_n 1_n^+\right)\right]'$ are independent.

Comment: Under $X \sim N_{p \times n}(M, \Sigma, \Psi)$,

AXB and CXD are independent if and only if $A\Sigma C' = 0$ or $B'\Psi D = 0$.

1

3. Tools

(1) Parameters

For random vectors $X \sim (\mu, \Sigma)$,

$$AX+b\sim (A\mu+b,\, A\Sigma A') \text{ and } E(X'BX)=\mu'B\mu+\operatorname{tr}(B\Sigma).$$

For random vectors X and Y, $E(X'AY) = \mu'_x A \mu_y + \operatorname{tr}(A\Sigma_{YX})$.

For random matrix $X \sim (M, \Sigma, \Psi)$,

$$AXB \sim (AMB, A\Sigma A', B'\Psi B)$$

$$E(XAX') = MAM' + tr(A\Psi)\Sigma$$

$$X' \sim (M', \Psi, \Sigma)$$

$$X'BX = M'BM + \operatorname{tr}(B\Sigma)\Psi$$

(2) Distributions

With normal vector $X \sim N(\mu, \Sigma)$

$$AX$$
 and BX are indep $\iff A\Sigma B' = 0$

$$A\Sigma B = 0$$
 where $B' = B \Longrightarrow AX$ and $X'BX$ are indep

$$A\Sigma B=0$$
 where $A'=A$ and $B'=B\Longrightarrow X'AX$ and $X'BX$ are indep

With normal matrix $X \sim N(M, \Sigma, \Psi)$

$$AXB$$
 and CXD are indep $\iff A\Sigma C' = 0$ or $B'\Psi D = 0$.

L21 Chi-square and Wishart distributions

- 1. A sampling distribution: χ^2 -distribution
 - (1) Definition

If $Z \sim N(\mu, I_k)$, the distribution of $Z'Z = Z_1^2 + \cdots + Z_k^2$ is called a χ^2 -distribution with non-centrality parameter $\mu'\mu$ and degrees of freedom k denoted by $\chi^2(\mu'\mu, k)$.

$$Z \sim N(\mu, I_k) \Longrightarrow Z'Z \sim \chi^2(\mu'\mu, k).$$

The notation for central χ^2 -distribution $\chi^2(0, k)$ is simplified as $\chi^2(k)$.

(2) A theorem

If $X \sim N(\mu, \Sigma)$ where $\Sigma > 0$ and $A\Sigma A = A = A'$, then $X'AX \sim \chi^2(\mu'A\mu, \operatorname{tr}(A\Sigma))$.

Pf: $A\Sigma A = A = A' \Longrightarrow \Sigma^{1/2} A\Sigma^{1/2}$ is symmetric and idempotent. In the compact form of EVD $\Sigma^{1/2}A\Sigma^{1/2}=P_rP_r', \quad P_r'P_r=I_r \text{ and } r=\operatorname{tr}(A\Sigma).$

(3) Distribution associated with sample variance s^2 is the sample variance based on a sample of size n from a normal population $N(\mu, \sigma^2)$. Then $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$.

Pf: Note that the sample $X \sim N\left(\mu 1_n, \sigma^2 I_n\right)$ and $s^2 = \frac{1}{n-1}X'\left(I_n - 1_n 1_n^+\right)X$. So $\frac{(n-1)s^2}{\sigma^2} = X'AX$ where $A = \frac{I_n - I_n I_n^+}{\sigma^2}$. But

(i)
$$A(\sigma^2 I_n)A = A$$
 (ii) $(\mu 1_n)'A(\mu 1_n) = 0$ (iii) $\operatorname{tr}(A\sigma^2 I_n) = n - 1$
So $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(0, n-1) = \chi^2(n-1)$.

- 2. A sampling distribution: Wishart distribution
 - (1) Definition

If $Z \sim N_{p \times n}(M, \Sigma, I_n)$, the distribution of ZZ' is called a Wishart distribution with non-centrality parameter MM', degrees of freedom n and a parameter matrix Σ denoted by $W_{p\times p}(MM', n, \Sigma)$.

$$Z \sim N_{p \times n}(M, \Sigma, I_n) \Longrightarrow ZZ' \sim W_{p \times p}(MM', n, \Sigma).$$

The notation for central Wishart $W_{p\times p}(0, n, \Sigma)$ is simplified as $W_{p\times p}(n, \Sigma)$. The notation for standard Wishart $W_{p\times p}(n, I_p)$ is simplified as $W_{p\times p}(n)$.

- (2) A theorem (Proof is left for you) If $X \sim N_{p \times n}(M, \Sigma, I_n)$ and $A^2 = A = A' \in \mathbb{R}^{n \times n}$, $XAX' \sim W_{p \times p}(MAM', \operatorname{tr}(A), \Sigma)$.
- (3) Distribution associated with sample variance-covariance matrix S is the sample variance-covariance matrix based on a sample of size n from a normal population $N(\mu, \Sigma)$. Then $(n-1)S \sim W_{p \times p}(n-1, \Sigma)$.

3

- **Pf:** Note that the sample $X \sim N_{p \times n} (M, \Sigma, I_n)$ where $M = \mu 1'_n$ and (n-1)S = CSSCP = XAX' where $A = I_n 1_n 1^+_n$. But (i) $A^2 = A = A'$ (so that XAX' has Wishart distribution) (ii) MAM' = 0 (This is the value for the non-centrality parameter)

 - (iii) tr(A) = n 1 (This is the degrees of freedom).
 - So $(n-1)S = \text{CSSCP} \sim W_{p \times p}(n-1, \Sigma)$. Conclusion follows.