L17: Extended concepts of Normal distribution and independence

1. Normal distributions

(1) New definition for $N(\mu, \Sigma)$

$$X \sim N(\mu, \Sigma) \iff X \stackrel{def}{\Longrightarrow} X \stackrel{d}{\Longrightarrow} AZ + \mu \text{ where } Z \sim N(0, I_r) \text{ by its pdf and } AA' = \Sigma$$

 $\Longrightarrow E(X) = \mu \text{ and } Cov(X) = \Sigma.$

(2) Extended concept of $N(\mu, \Sigma)$

$$X \sim N(\mu, \Sigma)$$
 by its pdf $\Longrightarrow X \sim N(\mu, \Sigma)$ by new definitionh

Proof If
$$X \sim N(\mu, \Sigma)$$
 by its pdf, then $\Sigma > 0$.

So
$$Z = \Sigma^{-1/2}(X - \mu) \sim N(0, I)$$
 by its pdf.

So
$$Z = \Sigma^{-1/2}(X - \mu) \sim N(0, I)$$
 by its pdf.
But $X = \Sigma^{1/2}[\Sigma^{-1/2}(X - \mu)] + \mu = \Sigma^{1/2}Z + \mu$ where $\Sigma^{1/2}[\Sigma^{1/2}]' = \Sigma$.

Thus by new definition $Z \sim N(\mu, \Sigma)$.

(3) A transformation

$$X \sim N(\mu, \Sigma) \Longrightarrow AX + b \sim N(A\mu + b, A\Sigma A')$$

Proof
$$X \sim N(\mu, \Sigma) \iff X = BZ + \mu, Z \sim N(0, I) \text{ and } BB' = \Sigma.$$

So
$$AX + b = (AB)Z + (A\mu + b)$$
 where $(AB)(AB)' = A\Sigma A'$.

Thus $AX + b \sim N(A\mu + b, A\Sigma A')$.

(4) Support of $X \sim N(\mu, \Sigma)$.

The support for
$$X \sim N(\mu, \Sigma)$$
 is $\mu + L(\Sigma)$. $(L(A) = \mathcal{R}(A) = \mathcal{C}(A) = S(A))$

Proof
$$X \sim N(\mu, \Sigma) \iff X = AZ + \mu$$
 where $AA' = \Sigma$ and $Z \sim N(0, I)$.

Thus
$$X = AZ + \mu \in \mu + L(A) = \mu + L(AA') = \mu + L(\Sigma)$$
.

Ex1: For
$$Z \sim N(0, 1^2)$$
 define $X_1 = Z + 1$ and $X_2 = Z + 2$.

Then
$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} Z + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix}$$
.

Ex2: The support for
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 in Ex1 is $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + L \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + L \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$.

2. Independence

(1) New definition for independence

Random vectors $X \in \mathbb{R}^m$ and $Y \in \mathbb{R}^n$ are independent if X is a vector-valued function of Z_I , Y is a vector-valued function of Z_{II} , and Z_I and Z_{II} are independent by classical definitions, i.e., Z_I has pdf $f_1(z_1)$, Z_{II} has pdf $f_2(z_{II})$, $\begin{pmatrix} Z_I \\ Z_{II} \end{pmatrix}$ has joint pdf $f(z_I, z_{II})$, and $f(z_I, z_{II}) = f_1(z_I) f_2(z_{II})$.

(2) Extended concept of independece

If X and Y are independent by classical definitions, they are independent by the new definition.

(3) Property I

If X and Y are independent by new definition, so are functions of X and functions of Y.

If X and Y are independent, then $P(X \in A|Y \in B) = P(X \in A)$ and $P(Y \in B | X \in A) = P(Y \in B)$

Proof $X \in A \Longrightarrow Z_I \in A_1$ and $Y \in B \Longrightarrow Z_{II} \in B_1$. So $P(X \in A) = P(X_I \in A_1)$ and $P(Y \in B) = P(X_{II} \in B_1)$ Thus $P(X \in A | Y \in B) = P(Z_I \in A_1 | Z_{II} \in B_1) = P(Z_I \in A_1) = P(X \in A)$.

(5) Property III

If X and Y are independent, then Cov(X, Y) = 0.

Pf: X is a vector valued function of Z_I , so X_i is a function of Z_I , $X_i = g_i(Z_I)$. Y is a vector-valued function of Z_{II} , so Y_j is a function of Z_{II} , $Y_j = h_j(Z_{II})$.

$$\begin{split} E(X_{i}Y_{j}) &= E[g_{i}(Z_{I})h_{j}(Z_{II})] = \int \int_{z_{I}, z_{II}} g_{i}(z_{I})h_{j}(z_{II})f(z_{I}, z_{II}) dz_{I} dz_{II} \\ &= \int \int_{z_{I}, z_{II}} g_{i}(z_{I})h_{j}(z_{II})f_{1}(z_{I})f_{2}(z_{II}) dz_{I} dz_{II} \\ &= \int \int_{z_{I}} g_{i}(z_{I})f_{1}(z_{I})dz_{I} \int \int_{z_{II}} h_{j}(z_{II})f_{2}(z_{II}) dz_{II} \\ &= E[g_{i}(Z_{I})]E[h_{j}(Z_{II})] = E(X_{i})E(Y_{j}). \end{split}$$

So $E(XY^T) = E(X)E(Y^T)$. Hence $Cov(X, Y) = E(XY^T) - E(X)E(Y^T) = 0$.

- 3. Independence in normal distributions Suppose $X \sim N_n(\mu, \Sigma)$.
 - (1) $AX \in \mathbb{R}^p$ and $BX \in \mathbb{R}^q$ are independent $\iff \operatorname{Cov}(AX, BX) = A\Sigma B' = 0$.

Pf: \Longrightarrow has been established by (5) of 2. Now consider \Leftarrow .

 $X \sim N(\mu, \Sigma) \iff X \stackrel{d}{=} DZ + \mu$ where $Z \in N(0, I_k)$ and $DD' = \Sigma$. In $AX = ADZ + A\mu$, $AD \in R^{p \times k}$ with rank r_1 has a sub-matrix $T_1 \in R^{r_1 \times k}$ with full row rank such that ADZ is a function of T_1Z and hence

$$AX = ADZ + A\mu$$
 is a function of T_1Z .

In $BX = BDZ + B\mu$, $BD \in R^{q \times k}$ with rank r_2 has a sub-matrix $T_2 \in R^{r_2 \times k}$ with full row rank such that BDZ is a function of T_2Z and hence

$$BX = BDZ + B\mu$$
 is a function of T_2Z .

Note that $0 = A\Sigma B' = ADD'B' = (AD)(BD)'$ has a sub-matrix T_1T_2' . So $T_1T_2' = 0$. From $\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} Z \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} T_1T_1' & 0 \\ 0 & T_2T_2' \end{pmatrix} \end{pmatrix}$, to claim the independence of T_1Z and

 T_2Z we need the full row rank of $\begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$ or full column rank of (T_1', T_2') . But

$$0 = (T_1', T_2') \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = T_1'\alpha + T_2'\beta \Longrightarrow \left\{ \begin{array}{l} 0 = T_1T_1'\alpha \\ 0 = T_2T_2'\beta \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} \alpha = (T_1T_1')^{-1}0 = 0 \\ \beta = (T_2T_2')^{-1}0 = 0 \end{array} \right.$$

So (T_1', T_2') has full column rank. Conclusion follows.

- (2) $A\Sigma B = 0$ where $B' = B \Longrightarrow AX$ and X'BX are independent.
 - **Pf:** B' = B has compact form of EVD $B = P_I \Lambda_r P_I'$.

 $0 = A\Sigma B = A\Sigma P_I \Lambda_r P_I' \Longrightarrow A\Sigma P_I = 0 \Longrightarrow AX$ and $P_I'X$ are independent by (1) of 3. So AX and $X'BX = (P_I'X)'\Lambda_r(P_I'X)$ are independent by (3) of 2.

L18 Matrices with normal distributions

- 1. Two notations for random matrices
 - (1) Settings $M = (m_1, ..., m_n) \in \mathbb{R}^{p \times n}, \ \Sigma' = \Sigma = (\sigma_{ij})_{p \times p} \ge 0$ where $\sigma_{ii} = \sigma_i^2$ for i = 1, ..., p, and $\Psi' = \Psi = (\psi_{ij})_{n \times n} \ge 0$ where $\psi_{ii} = \psi_i^2$ for i = 1, ..., n are non-random matrices. $X \in \mathbb{R}^{p \times n}$ is a random matrix.
 - (2) Notation $X \sim (M, \Sigma, \Psi)$ We write $X \sim (M, \Sigma, \Psi)$ if E(X) = M, $Cov(vec(X), vec(X)) = \Psi \otimes \Sigma$, i.e., $X \sim (M, \Sigma, \Psi) \iff vec(X) \sim (vec(M), \Psi \otimes \Sigma)$.
 - (3) Notation $X \sim N_{p \times n}(M, \Sigma, \Psi)$

$$X \sim N_{p \times n}(M, \Sigma, \Psi) \iff \text{vec}(X) \sim N(\text{vec}(M), \Psi \otimes \Sigma)$$

- (4) Relations $X \sim N_{p \times n}(M, \Sigma, \Psi) \implies X \sim (M, \Sigma, \Psi)$ $\iff X_i \sim (m_i, \Sigma, \psi_i^2) = (\mu_i, \psi_i^2 \Sigma) \text{ for all } i = 1, ..., n. \text{ and}$ $(X_i, X_j) \sim \left((m_i, m_j), \Sigma, \begin{pmatrix} \psi_i^2 & \psi_{ij} \\ \psi_{ji} & \psi_j^2 \end{pmatrix} \right) \text{ for all } i \neq j.$
- **Ex1:** $X_1, ..., X_n$ is a random sample from a $N(\mu, \sigma^2)$, then $\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu 1_n, \sigma^2 I_n)$.
- **Ex2:** $X_1,...,X_n$ is a random sample from a p-dimensional population. If the population has parameters (μ,Σ) , then $(X_1,...,X_n)\sim (\mu 1'_n,\Sigma,I_n)$. If the population has the distribution $N(\mu,\Sigma)$, then $(X_1,...,X_n)\sim N_{p\times n}(\mu 1'_n,\Sigma,I_n)$.

Ex3: $X \sim (\mu, \Sigma) = (\mu, \Sigma, 1)$ and $X \sim N(\mu, \Sigma) = N(\mu, \Sigma, 1)$. $N(\mu 1_n, \sigma^2 I_n) = N(\mu 1_n, I_n, \sigma^2)$.

- 2. X and X'
 - (1) If $X \sim N_{p \times n}(M, \Sigma, \Psi)$, then $X' \sim N_{n \times p}(M', \Psi, \Sigma)$. **Pf:** If $X \sim N_{p \times n}(M, \Sigma, \Psi)$, then $\text{vec}(X) \sim N(\text{vec}(M), \Psi \otimes \Sigma)$. With commutation matrix K_{pn} , $K_{pn}\text{vec}(X) \sim N(K_{pn}\text{vec}(M), K_{pn}(\Psi \otimes \Sigma)K_{np})$. Thus $\text{vec}(X') \sim N(\text{vec}(M'), \Sigma \otimes \Psi)$. Hence $X' \sim N_{n \times p}(M', \Psi, \Sigma)$.
 - (2) If $X \sim (M, \Sigma, \Psi)$, then $X' \sim (M', \Psi, \Sigma)$. **Pf:** Skipped

Ex4: Recall: For random vectors X and Y, $E(X'AY) = [E(X)]'A[E(Y)] + \operatorname{tr}(A\operatorname{Cov}(Y, X))$. So if $X = (X_1, ..., X_n) \sim (M, \Sigma, \Psi)$ where $M = (m_1, ..., m_n)$, then

$$E(X_i'AX_j) = (m_i'Am_j) + \operatorname{tr}(A\psi_{ji}\Sigma).$$

Note that $E(X_i'AX_j) = (E(X'AX))_{ij}$, $m_i'Am_j = (M'AM)_{ij}$ and $\operatorname{tr}(\Sigma)\psi_{ij} = \operatorname{tr}(A\Sigma)(\Psi)_{ij}$. So

$$E(X'AX) = M'AM + \operatorname{tr}(A\Sigma)\Psi.$$

Comment: In Ex4 $A \in R^{p \times p}$. What about E(XBX') where $B \in R^{n \times n}$? Hint: $X \sim (M, \Sigma, \Psi) \Longrightarrow Y = X' \sim (M', \Psi, \Sigma)$. $E(XBX') = E(Y'BY) = \cdots$.

- 3. More properties
 - (1) Distribution of a transformation If $X \sim N_{p \times n}(M, \Sigma, \Psi)$, then with $A \in \mathbb{R}^{q \times p}$, $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{C}^{q \times m}$

$$AXB + C \sim N_{q \times m}(AMB + C, A\Sigma A', B'\Psi B).$$

Pf: If $X \sim N_{p \times n}(M, \Sigma, \Psi)$, then $\text{vec}(X) \sim N(\text{vec}(M), \Psi \otimes \Sigma)$. So

$$\operatorname{vec}(AXB + C) = (B' \otimes A)\operatorname{vec}(X) + \operatorname{vec}(C)
\sim N((B' \otimes A)\operatorname{vec}(M) + \operatorname{vec}(C), (B' \otimes A)(\Psi \otimes \Sigma)(B \otimes A'))
= N(\operatorname{vec}(AMB + C), (B'\Psi B) \otimes (A\Sigma A'))$$

Thus $AXB + c \sim N_{q \times m}(AMB + C, A\Sigma A', B'\Psi B)$.

- (2) Parameters of a transformation If $X \sim (M, \Sigma, \Psi)$, then $AXB + C \sim (AMB + C, A\Sigma A', B'\Psi B)$. **Pf:** Skipped
- (3) Independence $X \sim N_{p \times n}(M, \Sigma, \Psi)$.

$$AXB$$
 and CXD are independent $\iff A\Sigma C' = 0$ or $B'\Psi D = 0$

Pf: AXB and CXD are independent if and only if $vec(AXB) = (B' \otimes A)vec(X)$ and $vec(CXD) = (D' \otimes C)vec(X)$ are independent. But $vec(X) \sim N(vec(M), \Sigma, \Psi)$. So AXB and CXD are independent if and only if Cov(vec(AXB), vec(CXD)) = 0. But

$$\operatorname{Cov}(\operatorname{vec}(AXB), \operatorname{vec}(CXD)) = (B' \otimes A)(\Psi \otimes \Sigma)(D' \otimes C)' = (B'\Psi D) \otimes (A\Sigma C').$$

So AXB and CXD are independent if and only if $A\Sigma C' = 0$ or $B'\Psi D = 0$.