
L17: Extended concepts of Normal distribution and independence

1. Normal distributions

(1) New definition for N(µ, Σ)

X ∼ N(µ, Σ)
def⇐⇒ X

d
== AZ + µ where Z ∼ N(0, Ir) by its pdf and AA′ = Σ

=⇒ E(X) = µ and Cov(X) = Σ.

(2) Extended concept of N(µ, Σ)
X ∼ N(µ, Σ) by its pdf =⇒ X ∼ N(µ, Σ) by new definitionh

Proof If X ∼ N(µ, Σ) by its pdf, then Σ > 0.
So Z = Σ−1/2(X − µ) ∼ N(0, I) by its pdf.
But X = Σ1/2[Σ−1/2(X − µ)] + µ = Σ1/2Z + µ where Σ1/2[Σ1/2]′ = Σ.
Thus by new definition Z ∼ N(µ, Σ).

(3) A transformation
X ∼ N(µ, Σ) =⇒ AX + b ∼ N(Aµ+ b, AΣA′)

Proof X ∼ N(µ, Σ) ⇐⇒ X = BZ + µ, Z ∼ N(0, I) and BB′ = Σ.
So AX + b = (AB)Z + (Aµ+ b) where (AB)(AB)′ = AΣA′.
Thus AX + b ∼ N(Aµ+ b, AΣA′).

(4) Support of X ∼ N(µ, Σ).
The support for X ∼ N(µ, Σ) is µ+ L(Σ). (L(A) = R(A) = C(A) = S(A))

Proof X ∼ N(µ, Σ) ⇐⇒ X = AZ + µ where AA′ = Σ and Z ∼ N(0, I).
Thus X = AZ + µ ∈ µ+ L(A) = µ+ L(AA′) = µ+ L(Σ).

Ex1: For Z ∼ N(0, 12) define X1 = Z + 1 and X2 = Z + 2.

Then

(
X1

X2

)
=

(
1
1

)
Z +

(
1
2

)
∼ N

((
1
2

)
,

(
1 1
1 1

))
.

Ex2: The support for X =

(
X1

X2

)
in Ex1 is

(
1
2

)
+ L

[(
1 1
1 1

)]
=

(
1
2

)
+ L

[(
1
1

)]
.

2. Independence

(1) New definition for independence
Random vectors X ∈ Rm and Y ∈ Rn are independent if X is a vector-valued function
of ZI , Y is a vector-valued function of ZII , and ZI and ZII are independent by classical

definitions, i.e., ZI has pdf f1(z1), ZII has pdf f2(zII),

(
ZI

ZII

)
has joint pdf f(zI , zII),

and f(zI , zII) = f1(zI) f2(zII).

(2) Extended concept of independece
If X and Y are independent by classical definitions, they are independent by the new
definition.

(3) Property I
If X and Y are independent by new definition, so are functions of X and functions of Y .

(4) Property II
If X and Y are independent, then P (X ∈ A|Y ∈ B) = P (X ∈ A) and
P (Y ∈ B|X ∈ A) = P (Y ∈ B)
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Proof X ∈ A =⇒ ZI ∈ A1 and Y ∈ B =⇒ ZII ∈ B1.
So P (X ∈ A) = P (XI ∈ A1) and P (Y ∈ B) = P (XII ∈ B1)
Thus P (X ∈ A|Y ∈ B) = P (ZI ∈ A1|ZII ∈ B1) = P (ZI ∈ A1) = P (X ∈ A).

(5) Property III
If X and Y are independent, then Cov(X, Y ) = 0.

Pf: X is a vector valued function of ZI , so Xi is a function of ZI , Xi = gi(ZI).
Y is a vector-valued function of ZII , so Yj is a function of ZII , Yj = hj(ZII).

E(XiYj) = E[gi(ZI)hj(ZII)] =
∫ ∫

zI , zII
gi(zI)hj(zII)f(zI , zII) dzI dzII

=
∫ ∫

zI , zII
gi(zI)hj(zII)f1(zI)f2(zII) dzI dzII

=
∫ ∫

zI)
gi(zI)f1(zI)dzI

∫ ∫
zII

hj(zII)f2(zII) dzII
= E[gi(ZI)]E[hj(ZII)] = E(Xi)E(Yj).

So E(XY T ) = E(X)E(Y T ). Hence Cov(X, Y ) = E(XY T )− E(X)E(Y T ) = 0.

3. Independence in normal distributions
Suppose X ∼ Nn(µ, Σ).

(1) AX ∈ Rp and BX ∈ Rq are independent ⇐⇒ Cov(AX, BX) = AΣB′ = 0.

Pf: =⇒ has been established by (5) of 2. Now consider ⇐=.

X ∼ N(µ, Σ) ⇐⇒ X
d
== DZ + µ where Z ∈ N(0, Ik) and DD

′ = Σ.
In AX = ADZ + Aµ, AD ∈ Rp×k with rank r1 has a sub-matrix T1 ∈ Rr1×k with
full row rank such that ADZ is a function of T1Z and hence

AX = ADZ +Aµ is a function of T1Z.

In BX = BDZ + Bµ, BD ∈ Rq×k with rank r2 has a sub-matrix T2 ∈ Rr2×k with
full row rank such that BDZ is a function of T2Z and hence

BX = BDZ +Bµ is a function of T2Z.

Note that 0 = AΣB′ = ADD′B′ = (AD)(BD)′ has a sub-matrix T1T
′
2. So T1T

′
2 = 0.

From

(
T1
T2

)
Z ∼ N

((
0
0

)
,

(
T1T

′
1 0

0 T2T
′
2

))
, to claim the independence of T1Z and

T2Z we need the full row rank of

(
T1
T2

)
or full column rank of (T ′

1, T
′
2). But

0 = (T ′
1, T

′
2)

(
α
β

)
= T ′

1α+ T ′
2β =⇒

{
0 = T1T

′
1α

0 = T2T
′
2β

=⇒
{
α = (T1T

′
1)

−10 = 0
β = (T2T

′
2)

−10 = 0

So (T ′
1, T

′
2) has full column rank. Conclusion follows.

(2) AΣB = 0 where B′ = B =⇒ AX and X ′BX are independent.

Pf: B′ = B has compact form of EVD B = PIΛrP
′
I .

0 = AΣB = AΣPIΛrP
′
I =⇒ AΣPI = 0 =⇒ AX and P ′

IX are independent by (1) of 3.
So AX and X ′BX = (P ′

IX)′Λr(P
′
IX) are independent by (3) of 2.
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L18 Matrices with normal distributions

1. Two notations for random matrices

(1) Settings
M = (m1, ...,mn) ∈ Rp×n, Σ′ = Σ = (σij)p×p ≥ 0 where σii = σ2i for i = 1, ..., p,
and Ψ′ = Ψ = (ψij)n×n ≥ 0 where ψii = ψ2

i for i = 1, ..., n are non-random matrices.
X ∈ Rp×n is a random matrix.

(2) Notation X ∼ (M, Σ, Ψ)
We write X ∼ (M, Σ, Ψ) if E(X) =M , Cov(vec(X), vec(X)) = Ψ⊗ Σ, i.e.,

X ∼ (M, Σ, Ψ) ⇐⇒ vec(X) ∼ (vec(M), Ψ⊗ Σ).

(3) Notation X ∼ Np×n(M, Σ, Ψ)

X ∼ Np×n(M, Σ, Ψ) ⇐⇒ vec(X) ∼ N(vec(M), Ψ⊗ Σ)

(4) Relations
X ∼ Np×n(M, Σ, Ψ) =⇒ X ∼ (M, Σ, Ψ)

⇐⇒ Xi ∼ (mi, Σ, ψ
2
i ) = (µi, ψ

2
iΣ) for all i = 1, .., n. and

(Xi, Xj) ∼
(
(mi, mj), Σ,

(
ψ2
i ψij

ψji ψ2
j

))
for all i ̸= j.

Ex1: X1, ..., Xn is a random sample from a N(µ, σ2), then

X1
...
Xn

 ∼ N(µ1n, σ
2In).

Ex2: X1, ..., Xn is a random sample from a p-dimensional population.
If the population has parameters (µ, Σ), then (X1, ..., Xn) ∼ (µ1′n, Σ, In).
If the population has the distribution N(µ, Σ), then (X1, .., Xn) ∼ Np×n(µ1

′
n, Σ, In).

Ex3: X ∼ (µ, Σ) = (µ, Σ, 1) andX ∼ N(µ, Σ) = N(µ, Σ, 1). N(µ1n, σ
2In) = N(µ1n, In, σ

2).

2. X and X ′

(1) If X ∼ Np×n(M, Σ, Ψ), then X ′ ∼ Nn×p(M
′, Ψ, Σ).

Pf: If X ∼ Np×n(M, Σ, Ψ), then vec(X) ∼ N(vec(M), Ψ⊗ Σ).
With commutation matrix Kpn, Kpnvec(X) ∼ N(Kpnvec(M), Kpn(Ψ⊗ Σ)Knp).
Thus vec(X ′) ∼ N(vec(M ′),Σ⊗Ψ). Hence X ′ ∼ Nn×p(M

′, Ψ, Σ).

(2) If X ∼ (M, Σ, Ψ), then X ′ ∼ (M ′, Ψ, Σ).

Pf: Skipped

Ex4: Recall: For random vectors X and Y , E(X ′AY ) = [E(X)]′A[E(Y )] + tr(ACov(Y, X)).
So if X = (X1, ..., Xn) ∼ (M, Σ, Ψ) where M = (m1, ..,mn), then

E(X ′
iAXj) = (m′

iAmj) + tr(AψjiΣ).

Note that E(X ′
iAXj) = (E(X ′AX))ij ,m

′
iAmj = (M ′AM)ij and tr(Σ)ψij = tr(AΣ)(Ψ)ij .

So
E(X ′AX) =M ′AM + tr(AΣ)Ψ.
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Comment: In Ex4 A ∈ Rp×p. What about E(XBX ′) where B ∈ Rn×n?
Hint: X ∼ (M, Σ, Ψ) =⇒ Y = X ′ ∼ (M ′, Ψ, Σ).

E(XBX ′) = E(Y ′BY ) = · · · .

3. More properties

(1) Distribution of a transformation
If X ∼ Np×n(M, Σ, Ψ), then with A ∈ Rq×p, B ∈ Rn×m and C ∈ Cq×m

AXB + C ∼ Nq×m(AMB + C, AΣA′, B′ΨB).

Pf: If X ∼ Np×n(M, Σ, Ψ), then vec(X) ∼ N(vec(M), Ψ⊗ Σ). So

vec(AXB + C) = (B′ ⊗A)vec(X) + vec(C)
∼ N((B′ ⊗A)vec(M) + vec(C), (B′ ⊗A)(Ψ⊗ Σ)(B ⊗A′))
= N(vec(AMB + C), (B′ΨB)⊗ (AΣA′))

Thus AXB + c ∼ Nq×m(AMB + C, AΣA′, B′ΨB).

(2) Parameters of a transformation
If X ∼ (M, Σ, Ψ), then AXB + C ∼ (AMB + C, AΣA′, B′ΨB).

Pf: Skipped

(3) Independence
X ∼ Np×n(M, Σ, Ψ).

AXB and CXD are independent ⇐⇒ AΣC ′ = 0 or B′ΨD = 0

Pf: AXB and CXD are independent if and only if vec(AXB) = (B′ ⊗ A)vec(X) and
vec(CXD) = (D′ ⊗ C)vec(X) are independent.
But vec(X) ∼ N(vec(M), Σ, Ψ). So AXB and CXD are independent if and only
if Cov (vec(AXB), vec(CXD)) = 0. But

Cov(vec(AXB), vec(CXD)) = (B′ ⊗A)(Ψ⊗ Σ)(D′ ⊗ C)′ = (B′ΨD)⊗ (AΣC ′).

So AXB and CXD are independent if and only if AΣC ′ = 0 or B′ΨD = 0.
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