
15: Distributions and parameters

1 A continuous random variable

(1) Probability density function (pdf)
X is a random variable if it is a variable and its values are associated with probabilities.
The relation of its values and probabilities is called the distribution of X.
The distribution can be depicted by its pdf f(x), a function with properties
(i) f(x) ≥ 0 (ii) P (X ∈ A) =

∫
A f(x)dx.

The domain of f(x) is where X can assume its values and is called the support of X.
One can always extend the support to R with f(x) = 0 outside its original support.
g(x) can be used as a pdf to define a distribution if (i) g(x) ≥ 0 (ii)

∫
R g(x)dx = 1.

(2) Parameters of X
E[h(X)] =

∫
R h(x)f(x) dx, the expectation of g(X), is the “average” value of h(X).

µ = E(X) =
∫
R xf(x) dx is the mean of X.

E(X2) =
∫
R x2f(x) dx is the second moment of X.

σ2 = var(X) = E(X − µ)2 = E(X2) − [E(X)]2 is the variance of X that gives the
magnitude of the fluctuation of the value of X.
µ and σ2 are two important parameters for X. X ∼ (µ, σ2) is often written to indicate
the two parameters.

(3) pdf of h(X)

(i) y = h(x) is a 1-1 function with inverse x = h−1(y). For Y = h(X)

P (Y ∈ A) = P (X ∈ h−1(A)) =
∫
h−1(A) f(x) dx

y=h(x)
====

∫
A

f(x)
h′(x)

∣∣∣
x=h−1(y)

dy.

So fY (y) =
f(x)
h′(x)

∣∣∣
x=h−1(y)

is pdf for Y .

(ii) F (x) = P (X ≤ x) =
∫ x
−∞ f(x)dx is the cumulative distribution function (cdf) for

X. Clearly f(x) = F ′(x). So fY (y) = F ′
Y (y) = [P (Y ≤ y)]′y.

Ex1: f(x) = 1√
2πσ2

exp
[
− 1

2σ2 (x− µ)2
]
≥ 0 and

∫
R f(x)dx = 1. Let f(x) be the pdf for X.

Then E(X) =
∫
R xf(x)dx = µ, E(X2) =

∫
R x2f(x)dx = σ2 + µ2. So E(X − µ)2) = σ2.

This distribution is called a normal distribution denoted by X ∼ N(µ, σ2).

Ex2: For X ∼ N(µ, σ2) let Y = aX + b where a ̸= 0. Then the pdf of Y is

fY (y) =
f(x)
a

∣∣∣
x= y−b

a

= 1√
2πa2σ2

exp
[
− 1

2a2σ2 (y − aµ− b)2
]
. Thus Y ∼ N(aµ+ b, a2σ2).

Ex3 For Z ∼ N(0, 12) let Y = Z2. Then

fY (y) = [P (Y ≤ y)]′y = [P (−√
y ≤ Z ≤ √

y)]′y =

[
2
∫ √

y
0

1√
2π
e−

z2

2 dz

]′
y

= 1√
2πy

e−
y
2 .

So Y ∼ Gamma
(
1
2 , 2

)
= χ2(1).

2. A continuous random vector

(1) Joint pdf and marginal pdf

Random vector X =

X1
...
Xp

 has joint pdf f(x) if f(x) = f(x1, .., xp) ≥ 0 and
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P (X ∈ A) =
∫∫

A f(x)dx1, .., dxp for all A ⊂ Rp. Let XI contains some of the com-

ponents of X, and XII contains the other components. For example XI =

(
X1

X2

)
. Then

fXI
(x1, x2) =

∫∫
Rp−2 f(x)dx3, .., dxp ≥ 0 is the pdf for XI , one of marginal pdfs of X.

P (XI ∈ A) = P (XI ∈ A,XII ∈ Rp−2) =
∫∫

A[
∫∫

Rp−2 f(x)dx3, ..., dxp] dx1dx2
=

∫∫
A fXI

(x1, x2) dx1dx2.

(2) Parameters
X has joint pdf f(x). E[h(X)] =

∫∫
Rp hx)f(x) dx1, .., dxp, is the expectation of h(X).

So E(Xi) =
∫∫

Rp xif(x) dx1, ..dxp =
∫
R xifXi(xi) dxi = µi,

E(X2
i ) =

∫∫
Rp x2i f(x) dx1, ..., dxp =

∫
R x2i fXi(xi) dxi and

var(Xi) = E(Xi − µi)
2 = E(X2

i )− [E(Xi)]
2 = σ2

i = σii
can be calculated with either joint pdf of X or marginal pdf of Xi, fXi(xi).

cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] = E(XiXj)− E(Xi)E(Xj) = σij and

ρ(Xi, Xj) =
cov(Xi, Xj)√
var(Xi) var(Xj)

= ρij

can be calculated with either joint pdf of X or marginal pdf of (Xi, Xj).
It is well known that −1 ≤ ρij ≤ 1 and ρii = 1.

(3) Parameter vectors and matrices

For random X ∈ Rp,

E(X1)
...

E(Xp)

 =

µ1
...
µp

 den
=== µ is the mean vector.

(cov(Xi, Xj))p×p = (σij)p×p
den
=== Σ is the variance-covariance matrix.

V = diag(σ2
1, ..., σ

2
p) is the variance matrix.

ρ = (ρij)p×p is the correlation matrix.
From Σ one can have V and ρ = V −1/2ΣV −1/2. X ∼ (µ, Σ) is often written to indicate
E(X) = µ and Cov(X, X) = Σ.

Ex4: f(x) = 1
(2π)p/2|Σ|1/2 exp

[
−1

2(x− µ)′Σ−1(x− µ)
]
≥ 0 where x ∈ Rp, µ ∈ Rp, Σ ∈ Rp×p

and Σ > 0. Then f(x) is a pdf for a random vector X ∈ Rp. This distribution is denoted
as X ∼ N(µ, Σ).
f(x) > 0 and by substitution z = Σ−1/2(x− µ)∫∫

Rp f(x)dx1, ..dxp =
∏p

i=1

∫∞
−∞

1√
2π

exp
(
− z2

i

2

)
dzi = 1.

Ex5: ForX in Ex4, fXi(xi) =
∫∫

Rp−1 f(x)dx1, ..., dxi−1, dxi+1, .., dxp =
1√
2πσ2

i

exp
[
− (xi−µi)

2

2σ2
i

]
.

Thus Xi ∼ N(µi, σ
2
i ). So E(Xi) = µi and var(Xi) = σ2

i .
With xI = (xi, xj)

′, fXi, Xj (xI) = 1
2π|ΣI |1/2

exp
[
−1

2(xI − µI)
′Σ−1

I (xI − µI)
]

where

µI = (µi, µj)
′ and ΣI =

(
σ2
i σij

σji σ2
j

)
. Consequently cov(Xi, Xj) = σij .

Thus in X ∼ N(µ, Σ), µ = E(X), Σ = Cov(X, X), and N(µ, Σ) is called a normal
distribution.
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