L10 Least square estimators

1. Least square estimators

(1) Linear model

 $y_1, ..., y_n$ are observations from a population system. Then data vector $y = (y_1, ..., y_n)'$ is a random vector. Model

$$y = X\beta + \epsilon$$
 with $E(\epsilon) = 0$

is a linear model since by the model specification $E(y) = X\beta$ is a linear function of unknown parameter vector $\beta \in \mathbb{R}^p$ and E(y) lies in a linear space $S = \mathcal{R}(X)$. Here $X \in \mathbb{R}^{n \times p}$ called the design matrix is known.

(2) Least square estimators

While $E(y) \in \mathcal{R}(X) = S$, y may or may not be in $S = \mathcal{R}(X)$. By intuition one would estimate E(y) by a vector in $S = \mathcal{R}(X)$ that has minimum-distance to y. The corresponding value of β is called a least square estimator (LSE) of β . So $\widehat{\beta}$ is a LSE of β if

$$||y - X\widehat{\beta}||^2 \le ||y - X\beta||^2$$
 for all $\beta \in \mathbb{R}^p$.

Estimated $y,\ \widehat{y}=X\widehat{\beta},$ is fitted value vector; $e=y-X\widehat{\beta}=y-\widehat{y}$ is residual vector; $Q(\beta)=\|y-X\beta\|^2;\ Q(\widehat{\beta})=\|y-X\widehat{\beta}\|^2=\|y-\widehat{y}\|^2=\|e\|^2=\sum_i e_i^2$ is the sum of squared errors (SSE).

(3) Equivalent statements

By the definitions, the following three are equivalent

(i)
$$\widehat{\beta}$$
 is LSE of β

(ii)
$$\widehat{\beta}$$
 is a LSS to $X\beta = i$

(ii)
$$\widehat{\beta}$$
 is a LSS to $X\beta = y$ (iii) $X\widehat{\beta} = \pi(y \mid \mathcal{R}(X))$

(4) The collection of all least square estimators

Let $LSE(\beta)$ be the collection of all LSE of β . Then

$$LSE(\beta) = X^+ y + \mathcal{N}(X)$$

where X^+y is perpendicular to $\mathcal{N}(X)$ and hence is the minimum-norm LSE

Ex1: Suppose $X \in \mathbb{R}^{n \times p}$ has full column rank. Then

(i)
$$\mathcal{N}(X) = \{0\}.$$

$$\supset$$
 is trivial. \subset : $\beta \in \mathcal{N}(X) \Longrightarrow X\beta = 0 \Longrightarrow \beta = X^L 0 = 0 \in \{0\}.$

(ii)
$$X^+ = (X'X)^{-1}X'$$

(iii) LSE(
$$\beta$$
) contains the unique $\widehat{\beta} = X^+ y = (X'X)^{-1} X' y$.

2. Restricted least square estimators

(1) LSE under $\beta \in \mathcal{D}$

 \mathcal{D} is a closed convex set in \mathbb{R}^p . For restricted linear model

$$y = X\beta + \epsilon$$
 with $E(\epsilon) = 0$ under $\beta \in \mathcal{D}$

 $\widehat{\beta}$ is LSE of β under $\beta \in \mathcal{D}$ if

$$\widehat{\beta} \in \mathcal{D}$$
 and $||y - X\widehat{\beta}||^2 \le ||y - X\beta||^2$ for all $\beta \in \mathcal{D}$.

1

(2) Equivalent statements

By the definitions the following three statements are equivalent

- (i) $\widehat{\beta}$ is LSE of β under $\beta \in \mathcal{D}$ (ii) $\widehat{\beta}$ is LSS to $X\beta = y$ under $\beta \in \mathcal{D}$
- (iii) $X\widehat{\beta} = \pi(y \mid X\mathcal{D})$
- (3) Comments

We do have formulas for $\pi(y \mid X\mathcal{D})$ when $X\mathcal{D}$ is $\mathcal{R}(\cdot)$, $\mathcal{R}^{\perp}(\cdot)$, $\mathcal{N}(\cdot)$, $\mathcal{N}^{\perp}(\cdot)$ and $\mathcal{A} = x_0 + S$.

$$\pi(y|\mathcal{A}) = \pi(y \mid x_0 + S) = x_0 + \pi(y - x_0 \mid S).$$

- 3. LSE under equation constraint
 - (1) Equation restrictions

$$A\beta = 0 \iff \beta \in \mathcal{N}(A) = \mathcal{D}$$

 $\Longrightarrow X\mathcal{D} = X\mathcal{N}(A) = X\mathcal{R}(I - A^{+}A) = \mathcal{R}[X(I - A^{+}A)].$

$$A\beta = b \iff \beta \in A^+b + \mathcal{N}(A) = \mathcal{D}$$
$$\implies X\mathcal{D} = XA^+b + X\mathcal{N}(A) = XA^+b + \mathcal{R}[X(I - A^+A)].$$

(2) LSE under $A\beta = 0$

The followings are equivalent.

- (i) $\widehat{\beta}$ is a LSE of β under $A\beta = 0$
- (ii) $\widehat{\beta}$ is a LSS to $X\beta = y$ under $A\beta = 0$ (iii) $X\widehat{\beta} = \pi(y \mid \mathcal{R}[X(I A^+A)]$

The collection of all LSEs of β under $A\beta = 0$ is $[X(I - A^+A)]^+y + \mathcal{N}(X)$.

$$\begin{aligned} \mathbf{Proof} & \widehat{\beta} \text{ is a LSE of } \beta \text{ under } A\beta = 0 \\ & \iff X\widehat{\beta} = \pi(y \mid \mathcal{R}[X(I - A^+ A)]) = X[X(I - A^+ A)]^+ y \\ & \iff N\left\{\widehat{\beta} - [X(I - A^+ A)]^+ y\right\} = 0 \iff \widehat{\beta} - [X(I - A^+ A)]^+ y \in \mathcal{N}(X) \\ & \iff \widehat{\beta} \in [X(I - A^+ A)]^+ y + \mathcal{N}(X). \end{aligned}$$

(3) LSE under consistent $A\beta = b$

The followings are equivalent

- (i) $\widehat{\beta}$ is a LSE of β under $A\beta = b$
- (ii) $\widehat{\beta}$ is a LSS to $X\beta = y$ under $A\beta = b$ (iii) $X\widehat{\beta} = \pi(y \mid XA^+b + \mathcal{R}[X(I A^+A)])$.

The collection of all LSEs of β under $A\beta = b$ is $A^+b + [X(I-A^+A)]^+(y-XA^+b) + \mathcal{N}(X)$

Proof
$$\widehat{\beta}$$
 is a LSE of $beta$ under $A\beta = b$
 $\iff X\widehat{\beta} = \pi(y \mid XA^+b + \mathcal{R}[X(I - A^+A)])$
 $\iff X\widehat{\beta} = XA^+b + \pi(y - XA^+b \mid \mathcal{R}[X(I - A^+A)])$
 $\iff X\widehat{\beta} = XA^+b + X[X(I - A^+A)]^+(y - XA^+b)$
 $\iff \widehat{\beta} \in A^+b + [X(I - A^+A)]^+(y - XA^+b) + \mathcal{N}(X).$

L11 Kronecker product and vectorization

- 1. Kronecker product
 - (1) Defintion

For
$$A = (a_{ij})_{m \times n}$$
 and $B \in R^{p \times q}$, $A \otimes B \stackrel{def}{=} \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix} \in R^{mp \times nq}$.

- (2) Associative property: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$. So $A \otimes B \otimes C$.
- (3) Distributive property: $(A_1 + A_2) \otimes B = (A_1 \otimes B) + (A_2 \otimes B)$ and $A \otimes (B_1 + B_2) = (A \otimes B_1) + (A \otimes B_2)$.
- (4) Scalar multiplication: $\alpha A = \alpha \otimes A$, $(\alpha A) \otimes (\beta B) = \alpha \beta (A \otimes B) = (\beta A) \otimes (\alpha B)$.
- (5) $(A \otimes B)' = A' \otimes B'$. Recall: (AB)' = B'A'.

Ex1: \otimes is not commutative: $A \otimes B \neq B \otimes A$. For example,

$$A = (1,2), B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \Rightarrow A \otimes B = \begin{pmatrix} 1 & 2 & 2 & 4 \\ 3 & 4 & 6 & 8 \end{pmatrix}, B \otimes A = \begin{pmatrix} 1 & 2 & 2 & 4 \\ 3 & 6 & 4 & 8 \end{pmatrix}.$$

Ex2: From (3) and (4),

$$(aA + bB) \otimes (cC + dD) = ac(A \otimes C) + ad(A \otimes D) + bc(B \otimes C) + bd(B \otimes D).$$

- 2. Matrix multiplication and Kronecker product
 - (1) $(A_1A_2) \otimes (B_1B_2) = (A_1 \otimes B_1)(A_2 \otimes B_2)$
 - (2) If $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{n \times n}$ are non-singular, so is $A \otimes B$ and $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$. **Pf:** $(A \otimes B)(A^{-1} \otimes B^{-1}) = I_m \otimes I_n = I_{mn}$. Recall: $(AB)^{-1} = B^{-1}A^{-1}$.
 - $(3) A^- \otimes B^- \subset (A \otimes B)^-$

Pf:
$$(A \otimes B)(A^- \otimes B^-)(A \otimes B) = (AA^-A) \otimes (BB^-B) = A \otimes B$$
.

- $(4) (A \otimes B)^+ = A^+ \otimes B^+.$
 - **Pf:** The result can be proven by showing the four conditions. For example, (iii) $(A \otimes B)(A^+ \otimes B^+) = (AA^+) \otimes (BB^+)$ is symmetric.

Ex3: Extensions

$$(A_1 \cdots A_k) \otimes (B_1 \cdots B_k) \otimes \cdots \otimes (C_1 \cdots C_k) = (A_1 \otimes B_1 \otimes \cdots \otimes C_1) \cdots (A_k \otimes B_k \otimes \cdots \otimes C_k)$$
$$(A_1 \otimes \cdots \otimes A_k)^{-1} = A_1^{-1} \otimes \cdots \otimes A_k^{-1} \qquad (A_1 \otimes \cdots \otimes A_k)^+ = A_1^+ \otimes \cdots \otimes A_k^+$$
$$A_1^- \otimes \cdots \otimes A_k^- \subset (A_1 \otimes \cdots \otimes A_k)^-.$$

Comment: For (1), the LHS is always the RHS. But the RHS may not be written as the LHS. For example, $(A_{1\times 2}\otimes B_{1\times 3})(C_{3\times 1}\otimes D_{2\times 1})\neq (A_{1\times 2}C_{3\times 1})\otimes (B_{1\times 3}D_{2\times 1}).$

- 3. Vectorization
 - (1) Definition

For
$$A=(A_1,...,A_n)\in R^{m\times n}$$
, $\operatorname{vec}(A)=\begin{pmatrix}A_1\\ \vdots\\ A_n\end{pmatrix}\in R^{mn}$ defines a 1-1 mapping between $R^{m\times n}$ and R^{mn} .

- (2) Properties of the transformation $vec(\cdot)$.
 - (i) $\operatorname{vec}(\cdot)$ is a linear transformation The transformation preserves linear combinations, i.e., for $C = \alpha A + \beta B$, after the transformation $\operatorname{vec}(C) = \alpha \operatorname{vec}(A) + \beta \operatorname{vec}(B)$, i.e.,

$$\operatorname{vec}(\alpha A + \beta B) = \alpha \operatorname{vec}(A) + \beta \operatorname{vec}(B).$$

(ii) $\operatorname{vec}(\cdot)$ preserves inner products For $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$, the Frobenius inner product

$$\langle A, B \rangle = \operatorname{tr}(B'A) = \sum_{i,j} a_{ij} b_{ij}.$$

After the transformation, $\langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle = [\operatorname{vec}(B)]'[\operatorname{vec}(A)] = \sum_{ij} a_{ij} b_{ij}$. Thus $\langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle = \langle A, B \rangle$.

(3) While generally $A \otimes B \neq B \otimes A$, for vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$,

$$x \otimes y' = y' \otimes x = xy' = \begin{pmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & \ddots & \vdots \\ x_my_1 & \cdots & x_my_n \end{pmatrix}.$$

So $\operatorname{vec}(x \otimes y') = \operatorname{vec}(y' \otimes x) = \operatorname{vec}(xy') = y \otimes x$.

(4) $\operatorname{vec}(AXB) = (B' \otimes A) \operatorname{vec}(X)$.

Pf: Suppose $X \in \mathbb{R}^{p \times q}$ and $I_q = (e_1, ..., e_q)$.

$$\begin{aligned} \operatorname{vec}(AXB) &= \operatorname{vec}[A(X_1,..,X_q)(e_1,..,e_q)'B] = \operatorname{vec}\left[(AX_1,...,AX_q) \begin{pmatrix} e_1'B \\ \vdots \\ e_q'B \end{pmatrix}\right] \\ &= \operatorname{vec}[(AX_1)(B'e_1)' + \cdots + (AX_q)(B'e_q)'] \\ &= \operatorname{vec}[(AX_1)(B'e_1)'] + \cdots + \operatorname{vec}[(AX_q)(B'e_q)'] \\ &= (B'e_1) \otimes (AX_1) + \cdots + (B'e_q) \otimes (AX_q) \\ &= (B' \otimes A)(e_1 \otimes X_1) + \cdots + (B' \otimes A)(e_q \otimes X_q) \\ &= (B' \otimes A) \operatorname{vec}(X_1e_1') + \cdots + (B' \otimes A) \operatorname{vec}(X_1e_q') \\ &= (B' \otimes A) \operatorname{vec}(X_1e_1' + \cdots + X_qe_q') \\ &= (B' \otimes A) \operatorname{vec}(XI') = (B' \otimes A) \operatorname{vec}(X). \end{aligned}$$

Comment: Y = AXB is a linear transformation from $R^{p \times q}$ to $R^{m \times n}$.

By 1-1 mapping, this transformation has image as a linear transformation from R^{pq} to R^{mn} . This transformation is $\text{vec}(Y) = (B' \otimes A) \text{vec}(X)$.

Ex4: 36 (1) on p70. Show that $tr(ABC) = [vec(A')]' \cdot (I \otimes B) \cdot vec(C)$.

$$\operatorname{tr}(ABC) = \operatorname{tr}[(A')'BC] = \langle BC, A' \rangle = \langle \operatorname{vec}(BC), \operatorname{vec}(A') \rangle = [\operatorname{vec}(A')]'[\operatorname{vec}(BC)]$$
$$= [\operatorname{vec}(A')]'[\operatorname{vec}(BCI)] = [\operatorname{vec}(A')]' \cdot (I \otimes B) \cdot \operatorname{vec}(C)$$