
L10 Least square estimators

1. Least square estimators

(1) Linear model
y1, ..., yn are observations from a population system. Then data vector y = (y1, ..., yn)

′

is a random vector. Model

y = Xβ + ϵ with E(ϵ) = 0

is a linear model since by the model specification E(y) = Xβ is a linear function of
unknown parameter vector β ∈ Rp and E(y) lies in a linear space S = R(X). Here
X ∈ Rn×p called the design matrix is known.

(2) Least square estimators
While E(y) ∈ R(X) = S, y may or may not be in S = R(X). By intuition one
would estimate E(y) by a vector in S = R(X) that has minimum-distance to y. The
corresponding value of β is called a least square estimator (LSE) of β. So β̂ is a LSE of
β if

∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β ∈ Rp.

Estimated y, ŷ = Xβ̂, is fitted value vector; e = y − Xβ̂ = y − ŷ is residual vector;
Q(β) = ∥y−Xβ∥2; Q(β̂) = ∥y−Xβ̂∥2 = ∥y− ŷ∥2 = ∥e∥2 =

∑
i e

2
i is the sum of squared

errors (SSE).

(3) Equivalent statements
By the definitions, the following three are equivalent
(i) β̂ is LSE of β (ii) β̂ is a LSS to Xβ = y (iii) Xβ̂ = π(y | R(X))

(4) The collection of all least square estimators
Let LSE(β) be the collection of all LSE of β. Then

LSE(β) = X+y +N (X)

where X+y is perpendicular to N (X) and hence is the minimum-norm LSE

Ex1: Suppose X ∈ Rn×p has full column rank. Then

(i) N (X) = {0}.
⊃ is trivial. ⊂: β ∈ N (X) =⇒ Xβ = 0 =⇒ β = XL0 = 0 ∈ {0}.

(ii) X+ = (X ′X)−1X ′

(iii) LSE(β) contains the unique β̂ = X+y = (X ′X)−1X ′y.

2. Restricted least square estimators

(1) LSE under β ∈ D
D is a closed convex set in Rp. For restricted linear model

y = Xβ + ϵ with E(ϵ) = 0 under β ∈ D

β̂ is LSE of β under β ∈ D if

β̂ ∈ D and ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β ∈ D.
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(2) Equivalent statements
By the definitions the following three statements are equivalent
(i) β̂ is LSE of β under β ∈ D (ii) β̂ is LSS to Xβ = y under β ∈ D
(iii) Xβ̂ = π(y | XD)

(3) Comments
We do have formulas for π(y | XD) whenXD isR(·), R⊥(·), N (·), N⊥(·) andA = x0+S.

π(y|A) = π(y | x0 + S) = x0 + π(y − x0 | S).

3. LSE under equation constraint

(1) Equation restrictions

Aβ = 0 ⇐⇒ β ∈ N (A) = D
=⇒ XD = XN (A) = XR(I −A+A) = R[X(I −A+A)].

Aβ = b ⇐⇒ β ∈ A+b+N (A) = D
=⇒ XD = XA+b+XN (A) = XA+b+R[X(I −A+A)].

(2) LSE under Aβ = 0

The followings are equivalent.
(i) β̂ is a LSE of β under Aβ = 0
(ii) β̂ is a LSS to Xβ = y under Aβ = 0
(iii) Xβ̂ = π(y | R[X(I −A+A)]

The collection of all LSEs of β under Aβ = 0 is [X(I −A+A)]+y +N (X).

Proof β̂ is a LSE of β under Aβ = 0

⇐⇒ Xβ̂ = π(y | R[X(I −A+A)]) = X[X(I −A+A)]+y

⇐⇒ N
{
β̂ − [X(I −A+A)]+y

}
= 0 ⇐⇒ β̂ − [X(I −A+A)]+y ∈ N (X)

⇐⇒ β̂ ∈ [X(I −A+A)]+y +N (X).

(3) LSE under consistent Aβ = b

The followings are equivalent
(i) β̂ is a LSE of β under Aβ = b
(ii) β̂ is a LSS to Xβ = y under Aβ = b
(iii) Xβ̂ = π(y | XA+b+R[X(I −A+A)]).

The collection of all LSEs of β under Aβ = b is A+b+[X(I−A+A)]+(y−XA+b)+N (X)

Proof β̂ is a LSE of beta under Aβ = b

⇐⇒ Xβ̂ = π(y | XA+b+R[X(I −A+A)])

⇐⇒ Xβ̂ = XA+b+ π(y −XA+b | R[X(I −A+A)])

⇐⇒ Xβ̂ = XA+b+X[X(I −A+A)]+(y −XA+b)

⇐⇒ β̂ ∈ A+b+ [X(I −A+A)]+(y −XA+b) +N (X).
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L11 Kronecker product and vectorization

1. Kronecker product

(1) Defintion

For A = (aij)m×n and B ∈ Rp×q, A⊗B
def
===

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq.

(2) Associative property: (A⊗B)⊗ C = A⊗ (B ⊗ C). So A⊗B ⊗ C.

(3) Distributive property:
(A1 +A2)⊗B = (A1 ⊗B) + (A2 ⊗B) and A⊗ (B1 +B2) = (A⊗B1) + (A⊗B2).

(4) Scalar multiplication: αA = α⊗A, (αA)⊗ (βB) = αβ(A⊗B) = (βA)⊗ (αB).

(5) (A⊗B)′ = A′ ⊗B′. Recall: (AB)′ = B′A′.

Ex1: ⊗ is not commutative: A⊗B ̸= B ⊗A. For example,

A = (1, 2), B =

(
1 2
3 4

)
⇒ A⊗B =

(
1 2 2 4
3 4 6 8

)
, B ⊗A =

(
1 2 2 4
3 6 4 8

)
.

Ex2: From (3) and (4),

(aA+ bB)⊗ (cC + dD) = ac(A⊗ C) + ad(A⊗D) + bc(B ⊗ C) + bd(B ⊗D).

2. Matrix multiplication and Kronecker product

(1) (A1A2)⊗ (B1B2) = (A1 ⊗B1)(A2 ⊗B2)

(2) If A ∈ Rm×m and B ∈ Rn×n are non-singular, so is A⊗B and (A⊗B)−1 = A−1⊗B−1.

Pf: (A⊗B)(A−1 ⊗B−1) = Im ⊗ In = Imn. Recall: (AB)−1 = B−1A−1.

(3) A− ⊗B− ⊂ (A⊗B)−

Pf: (A⊗B)(A− ⊗B−)(A⊗B) = (AA−A)⊗ (BB−B) = A⊗B.

(4) (A⊗B)+ = A+ ⊗B+.

Pf: The result can be proven by showing the four conditions. For example,
(iii) (A⊗B)(A+ ⊗B+) = (AA+)⊗ (BB+) is symmetric.

Ex3: Extensions
(A1 · · ·Ak)⊗ (B1 · · ·Bk)⊗· · ·⊗ (C1 · · ·Ck) = (A1⊗B1⊗· · ·⊗C1) · · · (Ak⊗Bk⊗· · ·⊗Ck)
(A1 ⊗ · · · ⊗ Ak)

−1 = A−1
1 ⊗ · · · ⊗ A−1

k (A1 ⊗ · · · ⊗ Ak)
+ = A+

1 ⊗ · · · ⊗ A+
k

A−
1 ⊗ · · · ⊗ A−

k ⊂ (A1 ⊗ · · · ⊗ Ak)
−.

Comment: For (1), the LHS is always the RHS. But the RHS may not be written as the
LHS. For example, (A1×2 ⊗B1×3)(C3×1 ⊗D2×1) ̸= (A1×2C3×1)⊗ (B1×3D2×1).

3. Vectorization

(1) Definition

For A = (A1, ..., An) ∈ Rm×n, vec(A) =

A1
...
An

 ∈ Rmn defines a 1-1 mapping between

Rm×n and Rmn.
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(2) Properties of the transformation vec(·).
(i) vec(·) is a linear transformation

The transformation preserves linear combinations, i.e., for C = αA+ βB, after the
transformation vec(C) = αvec(A) + βvec(B), i.e.,

vec(αA+ βB) = α vec(A) + β vec(B).

(ii) vec(·) preserves inner products
For A = (aij)m×n and B = (bij)m×n, the Frobenius inner product

⟨A, B⟩ = tr(B′A) =
∑
i,j

aijbij .

After the transformation, ⟨vec(A), vec(B)⟩ = [vec(B)]′[vec(A)] =
∑

ij aijbij .
Thus ⟨vec(A), vec(B)⟩ = ⟨A, B⟩.

(3) While generally A⊗B ̸= B ⊗A, for vectors x ∈ Rm and y ∈ Rn,

x⊗ y′ = y′ ⊗ x = xy′ =

x1y1 · · · x1yn
...

. . .
...

xmy1 · · · xmyn

 .

So vec(x⊗ y′) = vec(y′ ⊗ x) = vec(xy′) = y ⊗ x.

(4) vec(AXB) = (B′ ⊗A) vec(X).

Pf: Suppose X ∈ Rp×q and Iq = (e1, ..., eq).

vec(AXB) = vec[A(X1, .., Xq)(e1, .., eq)
′B] = vec

(AX1, ..., AXq)

e′1B
...

e′qB




= vec[(AX1)(B
′e1)

′ + · · ·+ (AXq)(B
′eq)

′]
= vec[(AX1)(B

′e1)
′] + · · ·+ vec[(AXq)(B

′eq)
′]

= (B′e1)⊗ (AX1) + · · ·+ (B′eq)⊗ (AXq)
= (B′ ⊗A)(e1 ⊗X1) + · · ·+ (B′ ⊗A)(eq ⊗Xq)
= (B′ ⊗A) vec(X1e

′
1) + · · ·+ (B′ ⊗A) vec(X1e

′
q)

= (B′ ⊗A) vec(X1e
′
1 + · · ·+Xqe

′
q)

= (B′ ⊗A)vec(XI ′) = (B′ ⊗A) vec(X).

Comment: Y = AXB is a linear transformation from Rp×q to Rm×n.
By 1-1 mapping, this transformation has image as a linear transformation from Rpq

to Rmn. This transformation is vec(Y ) = (B′ ⊗A) vec(X).

Ex4: 36 (1) on p70. Show that tr(ABC) = [vec(A′)]′ · (I ⊗B) · vec(C).

tr(ABC) = tr[(A′)′BC] = ⟨BC, A′⟩ = ⟨vec(BC), vec(A′)⟩ = [vec(A′)]′[vec(BC)]
= [vec(A′)]′[vec(BCI)] = [vec(A′)]′ · (I ⊗B) · vec(C)
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