L10 Least square estimators

1. Least square estimators

(1)

Linear model
Y1, ..., Yn are observations from a population system. Then data vector y = (y1, ..., yn)’
is a random vector. Model

y=Xp+ e with E(¢) =0

is a linear model since by the model specification E(y) = X is a linear function of
unknown parameter vector 5 € RP and E(y) lies in a linear space S = R(X). Here
X € R™*P called the design matrix is known.

Least square estimators
While E(y) € R(X) = S, y may or may not be in S = R(X). By intuition one
would estimate E(y) by a vector in S = R(X) that has minimum-distance to y. The
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corresponding value of 3 is called a least square estimator (LSE) of 5. So  is a LSE of
g if
ly = XB|I” < [ly — XB|)? for all B € RP.

Estimated y, y = X B, is fitted value vector; e = y — X B = y — y is residual vector;

Q) = lly~XBI* Q(B) = ly = XBI* = |y~ 71> = lle|* = 3=, €} is the sum of squared
errors (SSE).

Equivalent statements
By the definitions, the following three are equivalent
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(i) B is LSE of 8 (ii) Bis a LSS to X8 =y (i) XB = n(y | R(X))
The collection of all least square estimators
Let LSE(f) be the collection of all LSE of 5. Then

LSE(B) = X Ty + N (X)

where X Ty is perpendicular to A/(X) and hence is the minimum-norm LSE
Ex1: Suppose X € R™*P has full column rank. Then
(i) N(X) = {0},
D is trivial. C: BEN(X) = XB=0=3=XL0=0¢c {0}.
(i) Xt =(X'X)"'Xx’
(iii) LSE(B) contains the unique 3 = Xy = (X' X)~1X'y.

2. Restricted least square estimators

(1)

LSE under 5 € D
D is a closed convex set in RP. For restricted linear model

y = XpP + e with E(e) = 0 under 5 € D
B is LSE of 3 under 8 € D if

BeDand |ly— XB|?* < |y — XBI||? for all 8 € D.



(2) Equivalent statements
By the definitions the following three statements are equivalent
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(i) B is LSE of 3 under 8 € D (ii) B is LSS to X8 = y under 8 € D
(i) X3 = n(y | XD)
(3) Comments
We do have formulas for 7(y | XD) when XD is R(-), R(-), N(-), N (-) and A = x¢+S.

m(ylA) = 7(y |20+ S) =20 +7(y — 20 | 5).

3. LSE under equation constraint

(1) Equation restrictions

AB=0 < pBeN(A)=D
— XD =XN(A)=XR(I - ATA) = R[X(I — A+ A)].
AB=b < BeATb+N(A) =D
— XD =XATb+ XN(A) = XAtb+ R[X(I — A+ A)).
(2) LSE under A =0

The followings are equivalent.
(i) B is a LSE of 8 under AB =0
(ii) B is a LSS to X8 =y under AB =0
(iii) X5 = m(y | RIX(I — A*A)

The collection of all LSEs of 8 under A3 =01is [X(I — ATA)]Ty + N(X).
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Proof 15} 1As a LSE of § under A8 =0
= XB=nly | RIX(I - AT A)) = X[X(I - A*A)J*y
— N {3— [X(I - A+A)]+y} —0+= [ [X(I - At A)]ty € N(X)
= Be[X(I-ATA) Y+ N(X).
(3) LSE under consistent Af = b

The followings are equivalent
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(i) Bis a LSE of 3 under A8 =
(ii) 8 is a LSS to X =y under AB =0
(i) XB=n(y | XATo+ R[X (I — AT A)]).

The collection of all LSEs of 8 under A =bis ATb+[X(I—ATA)|T(y—XATb)+ N (X)
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Proof 5 is a LSE of beta under A =b

XB=n(y| XATb+R[X(I — ATA)])
XB=XA b+ 7(y— XATh | R[X(I — AT A)))
XB=XA b+ X[X(I - ATA)]T(y — XAtb)
BeAth+ [X(I— AT A (y — XATb) + N(X).

[



L11 Kronecker product and vectorization

1. Kronecker product

(1) Defintion

a11B L alnB
def .

For A = (aij)mxn and B € RP*9, A® B :
amB -+ amnB
(2) Associative property: (A B)@ C=A® (B (). So AR B C.
(3) Distributive property:
(Al +A2)®B = (A1®B)+(A2®B) and A®(B1+Bg) = (A®Bl) +(A®Bg).
(4) Scalar multiplication: ad =a ® A, (a¢d) ® (8B) = af(A® B) = (BA) @ (aB).
(5) (A® BY = A © B'. Recall: (ABY = B'A',

Ex1: ® is not commutative: A ® B # B ® A. For example,

1 2 1 2 2 4 1 2 2 4
A—(I,Z),B—(3 4>:>A®B—<3 16 8>>B®A_<3 6 4 8>'

Ex2: From (3) and (4),
(@aA+bB)® (¢cC+dD) =ac(A® C) + ad(A® D) 4+ be(B ® C) + bd(B ® D).
2. Matrix multiplication and Kronecker product

(1) (A142) ® (B1B2) = (A1 ® B1)(A2 ® Ba)

(2) If A€ R™™ and B € R™ " are non-singular, sois A® B and (A® B)™! = A~'@ B~
Pf: (A B) (A '@ B 1) =1,®1I, = I, Recall: (AB)"! = B~1A~1

(3) AA®B” C(A® B)~
Pf: (A B)(A-®B )(A® B)=(AA"A)® (BB B)=A® B.

(4) (A B)t = At @ BT.
Pf: The result can be proven by showing the four conditions. For example,

(iii) (A® B)(AT @ BT) = (AA") ® (BB™) is symmetric.

Ex3: Extensions
(Al"'Ak)®(Bl"'Bk)®"'®(01"'ck) = (A1®Bl®"'®Cl)"'(Ak®Bk®"'®Ck)
(A1®"'®Ak)_1 :A;1®...®Ag1 (Al®"'®Ak:)+:A1+®"‘®A;
AT @A, C(A1®--- @A),

Comment: For (1), the LHS is always the RHS. But the RHS may not be written as the
LHS. For example, (A1><2 X B1X3)(03><1 X Dgxl) 75 (A1X203><1) X (B1><3D2><1).

3. Vectorization

(1) Definition
For A = (A1,...,An) € R™", vec(A) = | : | € R™ defines a 1-1 mapping between

R™*™ and R™".



(2) Properties of the transformation vec(-).

(i) vec(-) is a linear transformation
The transformation preserves linear combinations, i.e., for C = A + 5B, after the
transformation vec(C) = avec(A) + fvec(B), i.e.,

vec(aA + B) = avec(A) + B vec(B).

(i) vec(:) preserves inner products
For A = (aij)mxn and B = (bij)mxn, the Frobenius inner product

<A, B> = tI‘(B/A) = Z az-jbij.
1,3
After the transformation, (vec(A), vec(B)) = [vec(B)]'[vec(A)] = >_,; ai;bij-
Thus (vec(A), vec(B)) = (A, B).
(3) While generally A ® B # B ® A, for vectors z € R™ and y € R",

1Yyr - T1lYn
TRy =y r=xy = :
TmY1 - TmYn
So vec(z @ y') = vec(y @ x) = vec(zy') = y @ .
(4) vec(AXB) = (B' ® A) vec(X).
Pf: Suppose X € RP*? and I, = (e1, ..., &q).

e/ B
vec(AXB) = vec[A(X1,..,Xq)(e1,..,eq)'B] = vec | (AX1,...,AX,) |

ey B

= vec[(AX1)(B'er) +---+ (AXy)(B'ey)’]

= vec[(AX1)(B'er)'] + - - + vec[(AX,)(B'e,)']

= (Ble1) ® (AX1) + -+ (Bleg) ® (AXy)

= (BoA)(e® X))+ + (B @ A)(eg ® X,)

= (B'® A)vec(X1ey) + -+ (B' @ A) vec(Xiep)

= (B'® A)vec(Xie} + - + Xgep)

= (B'® A)vec(XI') = (B' @ A)vec(X).

Comment: Y = AXB is a linear transformation from RP*? to R™*™.
By 1-1 mapping, this transformation has image as a linear transformation from RP?
to R™™. This transformation is vec(Y) = (B’ ® A) vec(X).

Ex4: 36 (1) on p70. Show that tr(ABC) = [vec(A")]" - (I ® B) - vec(C).

tr(ABC) = tr[(A")YBC]=(BC, A’") = (vec(BC), vec(A")) = [vec(A")]'[vec(BC)]
= [vec(A")]'[vec(BCI)] = [vec(A4")]" - (I ® B) - vec(C)



