
L08 Projection matrix and least square solutions

1. Projection matrix

(1) Definition
P ∈ Rn×n is a projection matrix if π(x | R(P )) = Px for all x ∈ Rn.

(2) Sufficient and necessary condition
P is a projection matrix ⇐⇒ P ′ = P = P 2.

Proof. ⇒: If P is a projection matrix, then π(x | R(P )) = Px for all x.
But π(x | R(P )) = PP+x. So PP+x = Px for all x. Thus P = PP+.
Hence P ′ = P = P 2.

⇐: If P ′ = P = P 2, then P+ = P and PP+ = PP = P .
So π(x | R(P )) = PP+x = PPx = Px for all x.
Thus P is a projection matrix.

(3) Properties
If p is a projection matrix, then Px is the projection of x onto

R(P ) = N⊥(P ) = N (I − P ) = R⊥(I − P ).

Proof When P ′ = P = P 2, (I − P )′ = I − P = (I − P )2. So R(P ) = N⊥(P ) and
R(P ) = N (I − P ) = R⊥(I − P ).

(4) Comments
AA+, A+A, I−AA+ and I−A+A are four real symmetric and idempotent matrices that
produce projection matrices onto eight spaces: R(A), R(A′), R⊥(A), R⊥(A′), N (A),
N (A′), N⊥(A) and N⊥(A′).

Ex1: A+A is the projection matrix onto four spaces. Find these four spaces.
R(A+A) = R ((A′)(A′)+) = R(A′); R(A+A) = N⊥(A+A) = N⊥(A);
R(A+A) = N (I −A+A) = R⊥(I −A+A). Thus the four spaces are

R(A′) = N⊥(A) = R⊥(I −A+A) = N (I −A+A).

Ex2: Find projection matrix onto π(x|N (A)).
N (A) = N (A+A) = R(I −A+A). So the projection matrix onto N (A) is I −A+A.

Ex3: Find projection matrix onto AR(B).
AR(B) = {Ay : y ∈ R(B)} = {ABx : x} = R(AB).
Thus the projection matrix onto AR(B) = R(AB) is (AB)(AB)+.

Ex4: Find projection matrix onto π(x|AN (B)).
AN (B) = AR(I − B+B) = R (A(I −B+B)). So the projection matrix onto
AN (B) = R (A(I −B+B)) is [A(I −B+B)][A(I −B+B)]+.

2. Least square solutions

(1) Least square solutions

x̂ is a least square solution to Ax = b
def⇐⇒ ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x.

(2) Traditional solutions

Ax = b is consistent
def⇐⇒ ∃x0 such that Ax0 = b

Suppose Ax = b is consistent. Then x̂ is a solution to Ax = b
def⇐⇒ Ax̂ = b.
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(3) Relations
Suppose Ax = b is consistent with a solution x0. Then

x̂ is a LSS to Ax = b ⇐⇒ x̂ is a solution to Ax = b.

Proof ⇒: If x̂ is a LSS to Ax = b, then ∥b−Ax̂∥2 ≤ ∥b−Ax0∥2 = 0.
So b−Ax̂ = 0, i.e., Ax̂ = b. Thus x̂ is a solution to Ax = b.

⇐: If x̂ is a solution to Ax = b, then ∥b−Ax̂∥2 = 0 ≤ ∥b−Ax∥2 for all x.
Thus x̂ is a LSS to Ax = b.

Comment: Any conclusions on LSS will hold for solutions for a consistent equation.

.

(4) The collection of all LSSs
Let LSS(Ax = b) be the collection of all LSS to Ax = b.
Then LSS(Ax = b) = A+b+N (A).
Proof x̂ ∈ LSS(Ax = b) ⇐⇒ ∥Ax̂− b∥2 ≤ ∥Ax− b∥2 for all x

⇐⇒ Ax̂ = π(b|R(A)) = AA+b ⇐⇒ A(x̂−A+b) = 0
⇐⇒ x̂−A+b ∈ N (A) ⇐⇒ x̂ ∈ A+b+N (A).

Comment: For consistent Ax = b, the collection of all solutions is A+b+N (A).

3. Structure of the LSS(Ax = b)

(1) An affine set

Set A in LS V is an affine set
def⇐⇒ A is closed under affine combination
def⇐⇒ αx+ (1− α)y ∈ A for all x, y ∈ A and α ∈ R

Comment: A convex combination is an affine combination.
An affine set is a convex set.

(2) A linear space
Suppose A is an affine set. Then A is a space ⇐⇒ 0 ∈ A.

Proof ⇒: Trivial

⇐: x ∈ A =⇒ αx = αx+ (1− α)0 ∈ A.
x, y ∈ A =⇒ x+ y = 2

(
1
2x+ 1

2y
)
∈ A. So A is a subspace.

(3) Relation
A is an affine set ⇐⇒ A = x0 + S where S is a LS

Proof ⇒: With x0 ∈ A, A = x0+(A− x0). We show that S = A−x0 is a space. First
0 = x0 − x0 ∈ A− x0 = S.
Secondly with x− x0, y − x0 ∈ A− x0 = S,

α(x− x0) + (1− α(y − x0) = (αx+ (1− α)y)− x0 ∈ A− x0 = S.
So S is an affine set containing 0 and hence is a subspace.

⇐: For x0 + s1, x0 + s2 ∈ x0 + S = A,
α(x0 + s1) + (1− α)(x0 + s2) = x0 + [αs1 + (1− α)s2] ∈ x0 + S = A.

So A is an affine set.

(4) Structure of LSS(Ax = b)
LSS(Ax = b) = A+b+N (A) is an affine set where A+b ∈ LSS(Ax = b).
Proof LSS(Ax = b) has x0 + S form.
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L09 Restricted least square solutions

1. (ABC)+

(1) (ABC)+ = C+C(ABC)+AA+

Proof Let M = ABC and G = C+C(ABC)AA+. Then
(i) MGM = (ABC)[C+C(ABC)+AA+](ABC) = (ABC)(ABC)+(ABC)

= ABC = M

(ii) GMG = [C+C(ABC)+AA+](ABC)[C+C(ABC)+AA+]
= C+C(ABC)+(ABC)(ABC)+AA+ = C+C(ABC)+AA+

= G

(iii) MG = (ABC)[C+C(ABC)+AA+] = (ABC)(ABC)+AA+.
But AA+(ABC)(ABC)+ = MM+ =⇒ (ABC)(ABC)+AA+ = MM+.
Thus MG = MM+ is symmetric.

(iv) GM = [C+C(ABC)+AA+](ABC) = C+C(ABC)+(ABC).
But (ABC)+(ABC)C+C = M+M =⇒ C+C(ABC)+(ABC) = M+M .
Thus GM = M+M is symmetric.

Hence G = M+.

(2) (ABC)+ = C+C(ABC)+ and (ABC)+ = (ABC)+AA+

Proof (ABC)+ = [I(AB)C]+ = C+C(ABC)+II+ = C+C(ABC)+.
(ABC)+ = [A(BC)I]+ = I+I(ABC)+AA+ = (ABC)+AA+.

(3) (AB)+ = B+B(AB)+AA+ = B+B(AB)+ = (AB)+AA+

Proof (AB)+ = (AIB)+; (AB)+ = (IAB)+; (AB)+ = (ABI)+.

(4) The projection matrix onto
AN (A) = AR(I −B+B) = R[A(I −B+B)] is

[A(I −B+B)][A(I −B+B)]+ = A[A(I −B+B)]+.

2. Restricted least square solutions
D is a closed convex set in LS V .

(1) Definition: Restricted least square solutions
x̂ is a restricted least square soution to Ax = b under x ∈ D

def⇐⇒ x̂ ∈ D and ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x ∈ D
(2) Definition: Projection onto closed convex set

For x ∈ V there exists a unique x̂ ∈ D such that

∥x− x̂∥2 ≤ ∥x− y∥2 for all y ∈ D.

This x̂ is called the projection of x onto D and is denoted as π(x | D).

(3) Theorem: A relation
x̂ is a LSS to Ax = b under the restriction x ∈ D ⇐⇒ Ax̂ = π(b | AD).
Proof x̂ is a restricted LSS to Ax = b under x ∈ D

def⇐⇒ x̂ ∈ D and ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x ∈ D
⇐⇒ Ax̂ = π(b | AD).
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(4) Example: LSS under Bx = 0
The collection of all LSSs to Ax = b under Bx = 0 is [A(I −B+B)]+b+N (A).
Proof x̂ is a LSS to Ax = b under consistent Bx = 0

⇐⇒ x̂ is a LSS to Ax = b under x ∈ N (B)
⇐⇒ Ax̂ = π(b | AN (A)) = A[A(I −B+B)]+b
⇐⇒ A {x̂− [A(I −B+B)]+b} = 0 ⇐⇒ x̂ ∈ [A(I −B+B)]+b+N (A).

3. Restricted LSS under affine set restriction

(1) Projection onto an affine set
A = x0 + S is an affine set in V where S is a subspace of V . For x ∈ V ,

π(x | A) = x0 + π(x− x0 | S).

Proof By the definition of π(x | A),

x̂ = π(x | A) ⇐⇒ x̂ ∈ A and ∥x− x̂∥2 ≤ ∥x− y∥2 for all y ∈ A.

x̂ ∈ A = x0 + S =⇒ x̂ = x0 + s∗ where s∗ ∈ S.
y ∈ A = x0 + S =⇒ y = x0 + s for all s ∈ S. So

x̂ = π(x | A) ⇐⇒ x̂ = x0 + s∗ where x∗ ∈ S and
∥x− (x0 + s∗)∥2 ≤ ∥x− (x0 + s)∥2 for all s ∈ S

⇐⇒ x̂ = x0 + s∗ where s∗ ∈ S and
∥(x− x0)− s∗∥2 ≤ ∥(x− x0)− s∥2 for all s ∈ S

⇐⇒ x̂ = x0 + s∗ where s∗ = π(x− x0 | S)
⇐⇒ x̂ = x0 + π(x− x0 | S).

(2) LSS under affine set restriction
x̂ is a LSS to Ax = b under x ∈ x0 + S ⇐⇒ Ax̂ = Ax0 + (b−Ax0 | AS)
Proof x̂ is a LSS to Ax = b under x ∈ D = A = x0 + S

⇐⇒ Ax̂ = π(b | AD) = π(b | Ax0 +AS) = Ax0 + π(b−Ax0 | AS).
(3) Theorem

The collection of all LSSs to Ax = b under x ∈ x0+R(B) is x0+B(AB)+(b−Ax0)+N (A).
Proof x̂ is a LSS to Ax = b under x ∈ x0 + S = x0 +R(B)

⇐⇒ Ax̂ = Ax0 + π(b−Ax0 | AR(B)) = Ax0 + (AB)(AB)+(b−Ax0)
⇐⇒ A [x̂− x0 −B(AB)+(b−Ax0)] = 0
⇐⇒ x̂− x0 −B(AB)+(b−Ax0) ∈ N (A)
⇐⇒ x̂ ∈ x0 +B(AB)+(b−Ax0) +N (A).

(4) Example: The collection of all LSSs to Ax = b under consistent Bx = c is

B+c+ [A(I −B+B)]+(b−AB+c) +N (A).

Proof For consistent Bx = c, Bx = c ⇐⇒ x ∈ D = B+c+N (B) = B+c+R(I−B+B).

So x̂ is a LSS to Ax = b under consistent Bx = c
⇐⇒ x̂ ∈ B+c+ (I −B+B)[A(I −B+B)]+(b−AB+c) +N (A)
⇐⇒ x̂ ∈ B+c+ [A(I −B+B)]+(b−AB+c) +N (A).

Ex: With c = 0, the collection of LSSs to Ax = b under Bx = 0 is

[A(I −B+B)]b+N (A).
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