LO8 Projection matrix and least square solutions

1. Projection matrix

(1)
(2)

Definition
P € R™™ is a projection matrix if 7(x | R(P)) = Pz for all z € R"™.

Sufficient and necessary condition
P is a projection matrix <= P’ = P = P2,
Proof. =: If P is a projection matrix, then w(z | R(P)) = Px for all x.
But 7(z | R(P)) = PP*z. So PP*z = Px for all z. Thus P = PP*.
Hence P’ = P = P2
«: If P/ = P = P?, then P* = P and PPt = PP = P.
So 7(z | R(P)) = PPtz = PPz = Pz for all z.

Thus P is a projection matrix.

Properties
If p is a projection matrix, then Px is the projection of x onto
R(P)=N*(P)=N(I-P)=R-(I-P).
Proof When P = P = P2, (I - P)) =1—- P = (I — P)%2. So R(P) = N(P) and
R(P) =N(I - P)=RI-P).
Comments
AAT ATA T—AAT and I — AT A are four real symmetric and idempotent matrices that
produce projection matrices onto eight spaces: R(A), R(A"), R+(A), R+(A"), N(A),
N(A), Nt(A) and NH(A").
Ex1: A" A is the projection matrix onto four spaces. Find these four spaces.
R(ATA) =R ((A)(A)") = R(A); R(ATA) = N (AT A) = N (A);
R(ATA) = N(I — AT A) = R (I — AT A). Thus the four spaces are
R(A) = NL(A) =RE(I — ATA) = N(I — AT A).
Ex2: Find projection matrix onto 7(z|N(A)).
N(A) =N(ATA) =R(I — AT A). So the projection matrix onto N'(A) is I — AT A.
Ex3: Find projection matrix onto AR(B).
AR(B) ={Ay: ye R(B)} ={ABz : 2} = R(AB).
Thus the projection matrix onto AR(B) = R(AB) is (AB)(AB)™.
Ex4: Find projection matrix onto w(z| AN (B)).
AN(B) = AR(I — B*B) = R(A(I — B*B)). So the projection matrix onto
AN (B) =R (A(I — B*B)) is [A(I — B™B)|[A(I — B*B)|™.

2. Least square solutions

(1) Least square solutions

7 is a least square solution to Az =b SN b — AZ|? < ||b — Az|? for all z.

(2) Traditional solutions

. . d
Ax = b is consistent é Jxg such that Axg =b
. . —~ . . d, ~
Suppose Ax = b is consistent. Then 7 is a solution to Ax = b é Az =b.



(3) Relations
Suppose Ax = b is consistent with a solution zy. Then

Z is a LSS to Az = b <= 7 is a solution to Az = b.

Proof =: If 7 is a LSS to Az = b, then ||b — AZ||?> < ||b — Axgl|? = 0.
Sob— Az =0, i.e., AZ = b. Thus 7 is a solution to Ax = b.
<: If 7 is a solution to Ax = b, then ||b — AZ||> = 0 < ||b — Az|? for all z.
Thus 7 is a LSS to Az = b.
Comment: Any conclusions on LSS will hold for solutions for a consistent equation.

(4) The collection of all LSSs
Let LSS(Ax = b) be the collection of all LSS to Az = b.
Then LSS(Az =b) = ATb+ N (A).
Proof 7 € LSS(Ax = b) <= ||AZ —b||?> < ||Az — b||? for all x
<— Az =7n(b|R(A)) = AATb <= A(Z — ATb) =0
— T-ATbeN(A) <= Te ATb+ N(A).
Comment: For consistent Az = b, the collection of all solutions is ATb+ N (A).

3. Structure of the LSS(Az = b)

(1) An affine set
/.

. . d . . .
Set A in LS V is an affine set <= A is closed under affine combination

£, ar+(l—a)ye Aforall z,y e Aand a € R

Comment: A convex combination is an affine combination.
An affine set is a convex set.

(2) A linear space
Suppose A is an affine set. Then A is a space < 0 € A.

Proof =: Trivial
cized=ar=azr+ (1 —a)0 e A
€, yE.A:>:U—|—y:2(%:U+%y) € A. So A is a subspace.
(3) Relation
A is an affine set <= A = zg + S where S is a LS

Proof =: With zg € A, A= xz¢o+ (A — z9). We show that S = A—x is a space. First
0:.%'0—%‘06./4—1‘0:5.
Secondly with 2 — zg, y — 20 € A — 29 = 5,
alr—z9)+ (1 —a(y—z0) =(ax+ (1 —a)y) —zp € A—z9=S.
So S is an affine set containing 0 and hence is a subspace.
<: For g+ s1, 70+ 82 €Ex9+ 5 = A,
alzo+s1)+ (1 —a)(xzo+ s2) =x0+ [as1 + (1 —a)sa] € zg+ 5 = A.
So A is an affine set.
(4) Structure of LSS(Ax = b)
LSS(Az =b) = ATb+ N(A) is an affine set where ATbh € LSS(Az = ).
Proof LSS(Az = b) has zo + S form.



L09 Restricted least square solutions

1. (ABC)*

(1) (ABC)* = C+C(ABC)TAA*

Proof Let M = ABC and G = C+C(ABC)AA*. Then
(i) MGM = (ABC)[C+C(ABC)*tAAT|(ABC) = (ABC)(ABC)*(ABC)
= ABC =M
[CC(ABC)* AAF|(ABC)[C+C(ABC)+ AAY]
_ CtC(ABC)*(ABC)(ABC)* AA* — CHC(ABC)* AA*
= G
(iii) MG = (ABC)[CTC(ABC)TAA™T] = (ABC)(ABC)tTAA™.
But AAH(ABC)(ABC)t = MM+ —s (ABC)(ABC)T AA* = MM™
Thus MG = MM™ is symmetric.
(iv) GM = [CTC(ABC)* AAT|(ABC) = C+*C(ABC)* (ABC).
But (ABC)*(ABC)CHC = M+ M — C+C(ABC)*(ABC) = M* M.
Thus GM = Mt M is symmetric.
Hence G = M ™.
(2) (ABC)" = CTC(ABC)* and (ABC)* = (ABC)TAA™
Proof (ABC)* = [[(AB)C]t = Ct*C(ABC)TII™ = CTC(ABC)*.
(ABC)* = [A(BC)I|* = I*I(ABC)*t AAT = (ABC)* AAT.
(3) (AB)Y = BTB(AB)TAAT = BTB(AB)" = (AB)TAAT
Proof (AB)" = (AIB)*; (AB)* = (IAB)*; (AB)* = (ABI)*.
(4) The projection matrix onto
AN (A) = AR(I — BTB) = R[A(I — BTB)] is
[A(I — BTB)][A(I — B™B)]* = A[A(I - BTB)|".

(i) GMG

2. Restricted least square solutions
D is a closed convex set in LS V.

(1) Definition: Restricted least square solutions
T is a restricted least square soution to Az = b under x € D
d ~ ~
&L ZeDand ||b— AF|? < ||b— Az||? for all 2 € D

(2) Definition: Projection onto closed convex set
For x € V there exists a unique Z € D such that

|z — Z||* < || — yl|* for all y € D.

This 7 is called the projection of  onto D and is denoted as 7(x | D).
(3) Theorem: A relation

z is a LSS to Az = b under the restriction z € D <= AZ = n(b | AD).

Proof Z is a restricted LSS to Az = b under z € D
£ Z e Dand ||b— AF|? < ||b— Az||? for all z € D

< Az =m(b| AD).



(4) Example: LSS under Bz =0
The collection of all LSSs to Az = b under Bx = 0 is [A(/ — BTB)]"b + N (A).
Proof 7 is a LSS to Az = b under consistent Bx = 0
< 7 isaLSS to Az = b under x € N(B)
< Az =n(b| AN(A)) = AJA(I — B*B)|*b
< A{Z—-[A(I-B*B)|"b} =0<= 7z € [A(I - B*B)|Tb+ N(A).

3. Restricted LSS under affine set restriction

(1) Projection onto an affine set
A =1x9+ S is an affine set in V where S is a subspace of V. For z € V,

(x| A) =z +7(x—z0|59).
Proof By the definition of 7(x | A),
F=n(r|A) =7 Aand ||z — 7| < ||z — y||? for all y € A.

T€A=20+S5 = 7T =u1x0+ s, where s, € S.
yeA=xg+S=—=y=x9+sforallseS. So

T=m(x| A <= T=uwx9+ s, where z, € S and
|z — (z0 + s4)||? < ||z — (20 + 8)||? for all s € S
< I =z + s, where s, € S and
[(z — 20) — 842 < |[(x — wg) — 5||*> for all s € S
< T =m0+ S« where s, =7m(x — x| 5)
— T=xo+7(x—20]|9).

(2) LSS under affine set restriction
T isa LSS to Az = b under x € g+ S <= AT = Az + (b— Axg | AS)
Proof TisalLSSto Ax=bunderz € D=A=2x20+ 5
< Arx=7w(b| AD) =n(b| Axg + AS) = Axg + (b — Axo | AS).
(3) Theorem
The collection of all LSSs to Az = bunder z € zo+R(B) is 29+ B(AB) T (b—Axg)+N(A).
Proof 7 is a LSS to Az = b under x € g+ S = xo + R(B)
< AT = Axg+ m(b— Azg | AR(B)) = Azo + (AB)(AB)* (b — Axy)
— A[i;\—xo—B(AB)+(b—Aa;0)]:O
< T—x9— B(AB)"(b— Axgy) € N(4)
< Z€wxo+ B(AB)T(b— Azg) + N(A).
(4) Example: The collection of all LSSs to Az = b under consistent Bx = ¢ is

Bte+[A(I - B*B)|*(b— AB*¢) + N(A).
Proof For consistent Bx = ¢, Bt = c <=z € D = Bt¢c+N(B) = Bt¢c+R(I—B"B).

So Z is a LSS to Az = b under consistent Bx = ¢
< T€BYtc+(I—-B™B)[AI-B*B)]"(b— AB*tc) + N(A)
< T €BTc+[A(I - B™B)]"(b— ABTc) + N(A).

Ex: With ¢ = 0, the collection of LSSs to Az = b under Bz =0 is
[A(I — B™B)]b+ N (A).



