
L07 Vector projections

1. Projections

(1) Minimum-distance projection
S is a subspace of V . For y ∈ V there exists a unique ŷ ∈ S such that

∥y − ŷ∥2 ≤ ∥y − z∥2 for all z ∈ S.

This ŷ is called the minimum-distance projection of y onto S.

(2) Orthogonal projection
S is a subspace of V . For y ∈ V there exists a unique ŷ ∈ S such that

(y − ŷ) ⊥ S, i.e., ⟨y − ŷ, z⟩ = 0 for all z ∈ S.

This ŷ is called the orthogonal projection of y onto S.

(3) Projection of y onto S
Minimum-distance projection and orthogonal projection of y onto S are equal, and is
called the projection of y onto S denoted as π(y|S).
Proof If ŷ is an orthogonal projection onto S, then ŷ ∈ S and (y− ŷ) ⊥ S. So for z ∈ S,

(y − ŷ) ⊥ (ŷ − z). Thus by Pythagorean theorem

∥y − z∥2 = ∥y − ŷ + ŷ − z∥2 = ∥y − ŷ∥2 + ∥ŷ − z∥2 ≥ ∥y − ŷ∥2.

Thus ŷ is the minimum-distance projection of y onto S.

2. Projections onto R(A) and R⊥(A)

(1) π(y | R(A)) = AA+y

Proof With A ∈ Rm×n R(A) ⊂ Rm. For y ∈ Rm, let ŷ = AA+y. Then

y = AA+y + (I −AA+)y = ŷ + (y − ŷ)

where ŷ = AA+y ∈ R(AA+) = R(A) and

y − ŷ = (I −AA+)y ∈ R(I −AA+) = N⊥(I −AA+) = [N (I −AA+)]
⊥

= [R(AA+)]
⊥
= [R(A)]⊥ = R⊥(A).

Thus (y − ŷ) ⊥ R(A). Hence ŷ = π(y | R(A)).

Comment: AA+ is called the projection matrix onto R(A).

(2) π(y | R⊥(A)) = (I −AA+)y

Proof With A ∈ Rm×n R⊥(A) ⊂ Rm. For y ∈ Rm, let ŷ = (I −AA+)y. Then

y = AA+y + (I −AA+)y = (y − ŷ) + ŷ

where ŷ = (I−AA+)y ∈ R⊥(A) and y− ŷ = AA+y ∈ R(A). Thus (y− ŷ) ⊥ R⊥(A).
Hence ŷ = π(y | R⊥(A)).

Comment: I −AA+ is the projection matrix onto R(I −AA+) = R⊥(A).
y = π(y | R(A)) + π(y | R⊥(A))
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3. Projections onto N (A) and N⊥(A)

(1) π(x|N (A)) = (I −A+A)x

Proof With A ∈ Rm×n N (A) ∈ Rn. For x ∈ Rn let x̂ = (I −A+A)x. Then

x = (I −A+A)x+A+Ax = x̂+ (x− x̂)

where x̂ ∈ R(I −A+A) = N (A+A) = N (A) and

x− x̂ = A+Ax ∈ R(A+A) =
[
N (A+A)

]⊥
= [N (A)]⊥ = N⊥(A).

So (x− x̂) ⊥ N (A). Hence x̂ = π(x | N (A)).

Comment: I −A+A is the projection matrix onto N (A) = R(I −A+A).

(2) π(x | N⊥(A)) = A+Ax.

Proof With A ∈ Rm×n, N⊥(A) ⊂ Rn. For x ∈ Rn let x̂ = A+Ax. Then

x = (A+Ax) + (I −A+A)x = x̂+ (x− x̂)

where x̂ = A+Ax ∈ N⊥(A) and x− x̂ ∈ N (A). So (x− x̂) ⊥ N⊥(A).
Hence x̂ = π(x | N⊥(A)).

Comment: A+A is the projection matrix onto N⊥(A) = R(A′).
x = π(x | N (A)) + π(x | N⊥(A)).

Ex: One estimate the solution of Ax = 0 by x0. Then the error can be measured by
min

{
∥x0 − x∥2 : Ax = 0

}
. Let x̂0 = π(x0 | N (A)). This error is

∥x0 − x̂0)∥2 = ∥x0 − π(x0 | N (A))∥2 = ∥π(x0 | N⊥(A)∥2 = ∥A+Ax0∥2 = x′0A
+Ax0.

With given A and x0, the problem becomes that of computing for A+.
If A has full column rank, then A has a left-inverse and A+ is one of its left-inverse. So
A+A = I and x′0A

+Ax0 = x′0x0 = ∥x0∥2. Note that under this assumption N (A) = {0}
since dim[N (A)] = n− rank(A) = n− n = 0.
If A has full row rank, then A+ = A′(AA′)−1 and A+A = A′(AA′)−1A.
If A has orthonormal rows, then A+ = A′.
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