L07 Vector projections

1. Projections

(1) Minimum-distance projection

S is a subspace of V. For $y \in V$ there exists a unique $\hat{y} \in S$ such that

$$||y - \hat{y}||^2 \le ||y - z||^2$$
 for all $z \in S$.

This \hat{y} is called the minimum-distance projection of y onto S.

(2) Orthogonal projection

S is a subspace of V. For $y \in V$ there exists a unique $\hat{y} \in S$ such that

$$(y - \widehat{y}) \perp S$$
, i.e., $\langle y - \widehat{y}, z \rangle = 0$ for all $z \in S$.

This \widehat{y} is called the orthogonal projection of y onto S.

(3) Projection of y onto S

Minimum-distance projection and orthogonal projection of y onto S are equal, and is called the projection of y onto S denoted as $\pi(y|S)$.

Proof If \widehat{y} is an orthogonal projection onto S, then $\widehat{y} \in S$ and $(y - \widehat{y}) \perp S$. So for $z \in S$, $(y - \widehat{y}) \perp (\widehat{y} - z)$. Thus by Pythagorean theorem

$$||y - z||^2 = ||y - \widehat{y} + \widehat{y} - z||^2 = ||y - \widehat{y}||^2 + ||\widehat{y} - z||^2 \ge ||y - \widehat{y}||^2.$$

Thus \hat{y} is the minimum-distance projection of y onto S.

2. Projections onto $\mathcal{R}(A)$ and $\mathcal{R}^{\perp}(A)$

 $(1) \ \pi(y \mid \mathcal{R}(A)) = AA^+y$

Proof With $A \in \mathbb{R}^{m \times n}$ $\mathcal{R}(A) \subset \mathbb{R}^m$. For $y \in \mathbb{R}^m$, let $\widehat{y} = AA^+y$. Then

$$y = AA^{+}y + (I - AA^{+})y = \hat{y} + (y - \hat{y})$$

where $\widehat{y} = AA^+y \in \mathcal{R}(AA^+) = \mathcal{R}(A)$ and

$$y - \widehat{y} = (I - AA^+)y \in \mathcal{R}(I - AA^+) = \mathcal{N}^{\perp}(I - AA^+) = [\mathcal{N}(I - AA^+)]^{\perp}$$

= $[\mathcal{R}(AA^+)]^{\perp} = [\mathcal{R}(A)]^{\perp} = \mathcal{R}^{\perp}(A)$.

Thus $(y - \hat{y}) \perp \mathcal{R}(A)$. Hence $\hat{y} = \pi(y \mid \mathcal{R}(A))$.

Comment: AA^+ is called the projection matrix onto $\mathcal{R}(A)$.

(2) $\pi(y \mid \mathcal{R}^{\perp}(A)) = (I - AA^{+})y$

Proof With $A \in \mathbb{R}^{m \times n}$ $\mathcal{R}^{\perp}(A) \subset \mathbb{R}^m$. For $y \in \mathbb{R}^m$, let $\widehat{y} = (I - AA^+)y$. Then

$$y = AA^{+}y + (I - AA^{+})y = (y - \hat{y}) + \hat{y}$$

where $\widehat{y} = (I - AA^+)y \in \mathcal{R}^{\perp}(A)$ and $y - \widehat{y} = AA^+y \in \mathcal{R}(A)$. Thus $(y - \widehat{y}) \perp \mathcal{R}^{\perp}(A)$. Hence $\widehat{y} = \pi(y \mid \mathcal{R}^{\perp}(A))$.

Comment: $I - AA^+$ is the projection matrix onto $\mathcal{R}(I - AA^+) = \mathcal{R}^{\perp}(A)$. $y = \pi(y \mid \mathcal{R}(A)) + \pi(y \mid \mathcal{R}^{\perp}(A))$

1

3. Projections onto $\mathcal{N}(A)$ and $\mathcal{N}^{\perp}(A)$

(1)
$$\pi(x|\mathcal{N}(A)) = (I - A^+A)x$$

Proof With $A \in \mathbb{R}^{m \times n}$ $\mathcal{N}(A) \in \mathbb{R}^n$. For $x \in \mathbb{R}^n$ let $\widehat{x} = (I - A^+ A)x$. Then

$$x = (I - A^{+}A)x + A^{+}Ax = \widehat{x} + (x - \widehat{x})$$

where $\widehat{x} \in \mathcal{R}(I - A^+A) = \mathcal{N}(A^+A) = \mathcal{N}(A)$ and

$$x - \widehat{x} = A^+ A x \in \mathcal{R}(A^+ A) = \left[\mathcal{N}(A^+ A) \right]^{\perp} = \left[\mathcal{N}(A) \right]^{\perp} = \mathcal{N}^{\perp}(A).$$

So $(x - \widehat{x}) \perp \mathcal{N}(A)$. Hence $\widehat{x} = \pi(x \mid \mathcal{N}(A))$.

Comment: $I - A^+A$ is the projection matrix onto $\mathcal{N}(A) = \mathcal{R}(I - A^+A)$.

(2) $\pi(x \mid \mathcal{N}^{\perp}(A)) = A^{+}Ax$.

Proof With $A \in \mathbb{R}^{m \times n}$, $\mathcal{N}^{\perp}(A) \subset \mathbb{R}^n$. For $x \in \mathbb{R}^n$ let $\widehat{x} = A^+Ax$. Then

$$x = (A^{+}Ax) + (I - A^{+}A)x = \hat{x} + (x - \hat{x})$$

where $\widehat{x} = A^+ A x \in \mathcal{N}^{\perp}(A)$ and $x - \widehat{x} \in \mathcal{N}(A)$. So $(x - \widehat{x}) \perp \mathcal{N}^{\perp}(A)$. Hence $\widehat{x} = \pi(x \mid \mathcal{N}^{\perp}(A))$.

Comment: A^+A is the projection matrix onto $\mathcal{N}^{\perp}(A) = \mathcal{R}(A')$. $x = \pi(x \mid \mathcal{N}(A)) + \pi(x \mid \mathcal{N}^{\perp}(A))$.

Ex: One estimate the solution of Ax = 0 by x_0 . Then the error can be measured by $\min \{||x_0 - x||^2 : Ax = 0\}$. Let $\widehat{x}_0 = \pi(x_0 \mid \mathcal{N}(A))$. This error is

$$||x_0 - \widehat{x}_0||^2 = ||x_0 - \pi(x_0 \mid \mathcal{N}(A))||^2 = ||\pi(x_0 \mid \mathcal{N}^{\perp}(A))||^2 = ||A^+ A x_0||^2 = x_0' A^+ A x_0.$$

With given A and x_0 , the problem becomes that of computing for A^+ .

If A has full column rank, then A has a left-inverse and A^+ is one of its left-inverse. So $A^+A = I$ and $x_0'A^+Ax_0 = x_0'x_0 = ||x_0||^2$. Note that under this assumption $\mathcal{N}(A) = \{0\}$ since dim $[\mathcal{N}(A)] = n - \text{rank}(A) = n - n = 0$.

If A has full row rank, then $A^+ = A'(AA')^{-1}$ and $A^+A = A'(AA')^{-1}A$.

If A has orthonormal rows, then $A^+ = A'$.