
L05 Moore-Penrose inverses

1. Relations of inverses

(1) Inverses
Three types of inverses: AL, AR, A−1. They may not exist. When they are existent,
A−1 is unique, but the other two may not be unique.
Two types of generalized inverses, A− and A+. They all exist. A+ is unique. A+ ∈ A−.

(2) Three cases

(i) If AL ̸= ∅, A+ ∈ A− = AL. (No assumption on the existence for AR and A−1.)

(ii) If AR ̸= ∅, A+ ∈ A− = AR.

(iii) If A−1 exists, A−1 = A+ = A− = AL = AR.

Pf: (i) A+ ∈ A−: trivial.
A− ⊂ AL: B ∈ A− =⇒ ABA = A =⇒ ALABA = ATA =⇒ BA = I

=⇒ B ∈ AL.
A− ⊃ AL: B ∈ AL =⇒ BA = I =⇒ ABA = A =⇒ B ∈ A−.

(iii) By (i) and (ii) A− = AL = AR. Now we show A+ = A− = A−1.
A+ ∈ A−: trivial.

A− ⊂ A−1: B ∈ A− =⇒ ABA = A =⇒
{

A−1ABA = A−1A
ABAA−1 = AA−1

=⇒
{

BA = I
AB = I

=⇒ B = A−1.

A−1 ∈ A+: AA−1A = A, A−1AA−1 = A−1, AA−1 = I is symmetric and
A−1A = I is symmetric. So A−1 ∈ A+.

Ex1: If A ∈ Rm×n has full column rank, then A+A = A−A = ALA = In.
If A ∈ Rm×n has full row rank, then AA+ = AA− = AAR = Im.

(3) Recall that rank(AA′) = rank(A′A) = rank(A).

(i) If A has full column rank, then A′A is full rank square matrix. So (A′A)−1 exists
and (A′A)−1A′ = A+.

(ii) If A has full row rank, then AA′ is full rank square matrix. So (AA′)−1 exists and
A′(AA′)−1 = A+.

Ex2: In regression you probably see the claim that β̂ = (X ′X)−1X ′y is a least square
estimator for β. Now we know that β̂ = X+y and we assume X has full column
rank so that β̂ = (X ′X)−1X ′y.

(4) If A is idempotent, i.e., A2 = A, then rank(A) = tr(A).

Pf: By the compact SVD for A with rank(A) = r, A = UI∆rV
′
I . Then

A2 = A ⇐⇒ UI∆rV
′
IUI∆rV

′
I = UI∆rV

′
I ⇐⇒ ∆rV

′
IUI = Ir.

So tr(A) = tr(UI∆rV
′
I ) = tr(∆rV

′
IUI) = tr(Ir) = r = rank(A).

Ex3: AA−, A−A, I−AA− and I−A−A are all idempotent. So, rank(A−A) = tr(A−A),
rank(AA−) = tr(AA−), rank(I −A−A) = tr(I −A−A)
and rank(I −AA−) = tr(I −AA−).
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2. Simple A+

(1) If A is symmetric and idempotent, i.e., A′ = A = A2, then A+ = A = AA+ = A+A

Pf: With G = A, AGA = AAA = A; GAG = AAA = A = G; AG = AA = A is
symmetric; GA = AA = A is symmetric. Thus A+ = G = A and AA+ = A = A+A.

Ex4: For A ∈ Rm×n, AA+, A+A, I−AA+ and I−A+A are symmetric and idempotent.
So (AA+)+ = AA+, (A+A)+ = A+A, (I −AA+)+ = I −AA+ and
(I −A+A)+ = I −A+A.

(2) If A has orthonormal columns, i.e., A′A = I, then A+ = A′ ∈ A− = AL;
If A has orthonormal rows, i.e., AA′ = I, then A+ = A′ ∈ A− = AR.

Pf: For the 1st one check condition (ii): Let B = A′, then BAB = A′AA′ = A′ = B.

(3) If the columns of A are perpendicular to the columns of B, i.e., A′B = 0, then

(A, B)+ =

(
A+

B+

)
so (A, B)(A, B)+ = AA+ +BB+.

If the rows of A are perpendicular to the rows of B, i.e., AB′ = 0, then(
A
B

)+

= (A+, B+) so

(
A
B

)+(
A
B

)
= A+A+B+B.

Pf: For the 1st one show (i). With A′B = 0,
A+B = (A+AA+)B = A+(AA+)′B = A+(A+)′A′B = 0. Similarly B+A = 0.

So (A, B)

(
A+

B+

)
(A, B) = (A, B)

(
A+A 0
0 B+B

)
= (A, B).

Ex5:

(
A 0
0 B

)+

= ((A, 0)+, (0, B)+) =

(
A+ 0
0 B+

)
.

3. Cases of (AB)+ = B+A+

(1) Recall

(i) If A = 0, then (AB)+ = B+A+ = 0. If B = 0, then (AB)+ = B+A+ = 0.

(ii) If A = B′, i.e., B = A′, then (AB)+ = B+A+ = (A′)+A+ = B+(B′)+.

(2) If A has orthonormal columns, then (AB)+ = B+A+.
If B has orthonormal rows, then (AB)+ = B+A+.

Pf: For 1st one show (iii).
A has orthonormal columns. So A+ = A′ and A′A = I.
(iii) (AB)(B+A+) = A(BB+)A′ is symmetric.

(3) If A has full column rank and B has full row rank, then (AB)+ = B+A+.

Pf: For 1st one show (ii).
A has full column rank and B has full row rank. So A+A = I and BB+ = I.
(ii) (B+A+)(AB)(B+A+) = B+IIA+ = B+A+.
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L06: Orthogonal complement of space

1. Two types of spaces

(1) Two spaces

For A ∈ Rm×n, y = Ax is a linear transformation of x ∈ Rn to y ∈ Rm with range

Range(A) = R(A) = {y = Ax ∈ Rm : x ∈ Rn}.

This range is span of the columns of A also called the column space of A denoted as
Span(A) = C(A) with dim[R(A)] = rank(A).
The Kernel of the transformation also called the null space of A,

N (A) = {x ∈ Rn : Ax = 0},

is a subspace of Rn with dim[N (A)] = n− rank(A).

Comment: For liner transformation f ,

dim[domain(f)] = dim[Kernel(f)] + dim[Range(f)].

With y = Ax: n = [n− rank(A)] + rank(A).

(2) Expressions of R(A)
For A ∈ Rm×n, (i) R(A) = R(AA−) (ii) R(A) = R(AA′) (iii) R(A) = R((A′)+)

Proof. Note that R(AB) ⊂ R(A) since y ∈ R(AB) =⇒ y = ABx = A(Bx) ∈ R(A).
(i) R(A) = R(AA−A) ⊂ R(AA−) ⊂ R(A).
(ii)R(A) = R(AA+A) = R (A(A+A)′) = R (AA′(A+)′) ⊂ R(AA′) ⊂ R(A).
(iii) R(A) = R ((AA+)′) ⊂ R ((A+)′) = R((A+AA+)′) = R(AA+(A+)′) ⊂ R(A).

Ex1: For A ∈ Rm×n, R(A) = R(AA+) where AA+ is symmetric and idempotent.

(3) Expressions of N (A)

For A ∈ Rm×n, (i) N (A) = N (A−A) (ii) N (A) = N (A′A) (iii) N (A) = N ((A+)′).

Proof. Note that N (A) ⊂ N (BA) since
x ∈ N (A) =⇒ Ax = 0 =⇒ BAx = 0 =⇒ x ∈ N (BA).

(i) N (A) ⊂ N (A−A) ⊂ N (AA−A) = N (A).
(ii) N (A) ⊂ N (A′A) ⊂ N ((A+)′A′A) = N ((AA+)′A) = N (A).
(iii) N (A) = N ((A+A)′) ⊂ N ((A+)′A′(A+)′) = N ((A+)′) ⊂ N (A′(A+)′)

= N (A+A) = N (A).

Ex2: For A ∈ Rm×n, N (A) = N (A+A) where A+A is symmetric itempotent.

2. Cross expressions

(1) Condition for cross expression
If D is idempotent, i.e., D2 = D, then R(D) = N (I −D) and N (D) = R(I −D).
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Proof Only show R(D) = N (I −D)
⊂: y ∈ R(D) =⇒ y = Dx =⇒ (I −D)y = Dx−D2x = 0 =⇒ y ∈ N (I −D).
⊃: y ∈ N (I −D) =⇒ (I −D)y = 0 =⇒ y = Dy ∈ R(D).

(2) Expressing R(A) by null space

For A ∈ Rm×n, R(A) = R(AA−) = N (Im −AA−).

Ex3: R(A) = R(AA+) = N (Im −AA+).

(3) Expressing N (A) by range

N (A) = N (A−A) = R(In −A−A).

Ex4: N (A) = N (A+A) = R(In −A+A).

3. Orthogonal complements

(1) Orthogonal complements
For A ∈ Rm×n, the orthogonal complement of R(A),

R⊥(A) = {y ∈ Rm : ⟨y, z⟩ = 0 for all z ∈ R(A)}

is also a space in Rm. The orthogonal complement of N (A),

N⊥(A) = {y ∈ Rn : ⟨y, z⟩ = 0 for all z ∈ N (A)}

is a space in Rn.

(2) Expressing R⊥(A) by null space: R⊥(A) = N (A′).

Proof. R⊥(A) = N (A′) since

y ∈ R⊥(A) ⇐⇒ ⟨y, z⟩ = 0 for all z ∈ R(A) ⇐⇒ ⟨y, Ax⟩ = 0 for all x ∈ Rn

⇐⇒ x′A′y = 0 for all x ∈ Rn ⇐⇒ A′y = 0 ⇐⇒ y ∈ N (A′).

So R⊥(A) = N (A′).

(3) Expressing N⊥(A) by range: N⊥(A) = R(A′).

Proof. Note that A+A is idempotent, I −A+A is symmetric and idempotent.

N⊥(A) = [N (A)]⊥ = [N (A+A)]⊥ = [R(I −A+A)]⊥ = N (I −A+A)
= R (I − (I −A+A)) = R(A+A) = R ((A′)(A′)+) = R(A′).

Ex5: R⊥(A) = N (A′) = N ((A′)+A′) = N (AA+) = R(I −AA+).

Ex6: N⊥(A) = R(A′) = R(A+) = R(A+A).
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