L05 Moore-Penrose inverses

1. Relations of inverses

(1) Inverses

Three types of inverses: A", A% A~!. They may not exist. When they are existent,

A~ is unique, but the other two may not be unique.

Two types of generalized inverses, A~ and AT. They all exist. AT is unique. AT € A~.

(2) Three cases

(i) If AX#£0, At € A=~ = AL, (No assumption on the existence for A" and A=)

(ii) If AR £, At € A= = AR

(iii) If A=! exists, A=! = At = A= = AL = AR

Pf: (i) AT € A™: trivial.

A" CA" Be A~ = ABA=A=— A'ABA=ATA— BA=1
= Be AL
A-D A" Be A = BA=1=— ABA=A=— Bc A~.
(iii) By (i) and (ii) A= = A* = A®. Now we show AT = A~ = A~1,
At € A™: trivial.
A= c AL BEA_:>ABA:A:>{
=\ AB—-1 — B=A""
ATV e At AATTA=A, A7TAA = A71 AA™! = [ is symmetric and
A~'A = I is symmetric. So A~ € AT,
Ex1: If A € R™ ™ has full column rank, then ATA=A"A=AlA=1,.
If A € R™*" has full row rank, then AAT = AA~ = AAR =1,,.
(3) Recall that rank(AA’) = rank(A’A) = rank(A).
(i) If A has full column rank, then A’A is full rank square matrix. So (A’A)~! exists
and (A’A)~1A" = AT,

(i) If A has full row rank, then AA’ is full rank square matrix. So (AA’)~! exists and
A(AAN T = AT,

Ex2: In regression you probably see the claim that B = (X'X)~1X'y is a least square
estimator for 5. Now we know that 8 = X Ty and we assume X has full column
rank so that 8 = (X'X)"1Xy.

(4) If A is idempotent, i.e., A2 = A, then rank(A) = tr(A).
Pf: By the compact SVD for A with rank(A) =r, A= U;A,V/. Then

A71ABA = A71A
ABAA™! = AA7T

A? = A = UAVIUIA, V] = UIA V] <= A VU = I,.

So tr(A) = tr(UrAV]) = tr(A,V/Ur) = tr(I;) = r = rank(A).

Ex3: AA=, A A, I—AA™ and [ — A~ A are all idempotent. So, rank(A~A) = tr(A~A),
rank(AA™) = tr(AA™), rank(/ — A~ A) =tr(I — A~ A)
and rank(/ — AA™) =tr(I — AA™).



2. Simple AT

(1) If A is symmetric and idempotent, i.e., A’ = A = A% then AT = A= AAT = AT A
Pf: With G = A, AGA = AAA = A; GAG = AAA = A = G; AG = AA = A is
symmetric; GA = AA = A is symmetric. Thus AT =G = Aand AAT = A= ATA.
Ex4: For A€ R™ " AAT, ATA I—-AA" and I — A" A are symmetric and idempotent.
So (AAT) = AA*, (ATA)F = AT A, (I — AAT)Y = [ — AA* and
(I— ATA)yT =T — ATA.
(2) If A has orthonormal columns, i.e., A’/A = I, then AT = A’ € A= = AL,
If A has orthonormal rows, i.e., AA’ =1, then At = A’ € A= = AR,
Pf: For the 1st one check condition (ii): Let B = A’, then BAB = A’/AA" = A’ = B.

(3) If the columns of A are perpendicular to the columns of B, i.e., A’B =0, then
+
(A, B)* = (g) s (A, B)(A, B)* = AA* + BB™.
If the rows of A are perpendicular to the rows of B, i.e., AB’ = 0, then

<g)+:(A+’ B*) so <g>+ (g) _ A+*A 1 B*B.

Pf: For the 1st one show (i). With A’B =0,
AYB = (ATAAY)B = AH(AATYB = A (AY)Y A'B = 0. Similarly B*A = 0.

So (A, B) <;‘i> (A, B) = (A, B) (ASA o B> — (4, B).

A 0\" N (AT 0
Ex5: (0 B) =((4,0)", (0,B) )—<0 B*)'
3. Cases of (AB)T = Bt A"

(1) Recall
(i) If A=0, then (AB)* = BTAt =0. If B=0, then (AB)" = BtAT =0.
(i) If A= B/, i.c., B= A, then (AB)T = B+ A+ = (A"}t AT = B+(B')*.

(2) If A has orthonormal columns, then (AB)T = BTA™.
If B has orthonormal rows, then (AB)" = BTA™T.

Pf: For 1st one show (iii).
A has orthonormal columns. So AT = A’ and A’A = I.
(iii) (AB)(BtA"T) = A(BB™)A’ is symmetric.
(3) If A has full column rank and B has full row rank, then (AB)" = BT A™.

Pf: For 1st one show (ii).
A has full column rank and B has full row rank. So ATA =17 and BBt = 1.
(ii) (BTAT)(AB)(BTA"T) = BTIIAT = BT A*.



L06: Orthogonal complement of space

1. Two types of spaces

(1) Two spaces

For A € R™*™ y = Ax is a linear transformation of x € R" to y € R™ with range
Range(A) =R(A) ={y=Ax € R": z € R"}.

This range is span of the columns of A also called the column space of A denoted as
Span(A) = C(A) with dim[R(A)] = rank(A).
The Kernel of the transformation also called the null space of A,

N(A) ={z e R": Az =0},

is a subspace of R™ with dim[N(A)] = n — rank(A).

Comment: For liner transformation f,
dim[domain( f)] = dim[Kernel( f)] + dim[Range(f)].

With y = Az: n = [n — rank(A)] + rank(A).
(2) Expressions of R(A)
For A € R™™, (i) R(A) = R(AA™) (ii) R(A) = R(AA") (iii) R(4) =R((A")™)
Proof. Note that R(AB) C R(A) since y € R(AB) = y = ABx = A(Bz) € R(A).
(i) R(A) = R(AA=A) € R(AA™) C R(A).
(i)R(A) = R(AATA) = R(A(ATA)) =R (AA/(AT)) C R(AA") C R(A).
(iii) R(A) = R ((AAT)) C R((AT)) =R((ATAAT)) = R(AAT(AT)) C R(A).

Ex1: For A € R™*" R(A) = R(AA") where AA™ is symmetric and idempotent.
(3) Expressions of N'(A)

For A € R™™, (i) N(A) = N(A"A) (ii) N(A) = N(A'A) (iii) N(A) = N ((AT)).
Proof. Note that N (A) C N(BA) since
re€N(A) = Ax =0= BAr = 0= z € N(BA).

(i) N(A) CN(A~A) C N(AA—A) N(A).

(ii) N(A4) C N(A'A) C (( ) A'A) = N((AAT) A) = N(A).

(ili) M(A) = N((ATA)) C N ((AT)A'(AT)) = N ((AT)) C N (A(AT))
=N(ATA) = N(A).

Ex2: For A € R™*" N(A) = N(A'A) where AT A is symmetric itempotent.
2. Cross expressions

(1) Condition for cross expression
If D is idempotent, i.e., D?> = D, then R(D) = N(I — D) and N (D) = R(I — D).



(2)

3)

Proof Ouly show R(D) =N (I — D)
C:yeER(D)=y=Dx= (I -D)y=Dx—D*r=0=y e N( - D).
D:yeN(I-D)=— (I-D)y=0=y=DyeR(D).

Expressing R(A) by null space

For A € R™™, R(A) = R(AA™) = N (I, — AA™).
Ex3: R(A) = R(AAT) = N (I, — AA™).
Expressing NV(A) by range

N(A) =N(A"A) =R(I, — A~ A).
Ex4: N(A) =N(ATA) =R(I, — ATA).

3. Orthogonal complements

(1)

Orthogonal complements
For A € R™*" the orthogonal complement of R(A),

RY(A)={ye R™: (y, z) =0 for all z € R(A)}
is also a space in R™. The orthogonal complement of N'(A),
NLA) ={y e R": (y,2) =0 forall z € N(A)}
is a space in R"™.
Expressing R (A) by null space: RE(A) = N(A).
Proof. R+(A) = N(A’) since

y € RY(A) < (y,2)=0forall z€ R(A) < (y, Az) =0 for all z € R"
— dAy=0forallze R" <= Ay=0<=yec N(4).

So RH(A) = N(A").
Expressing N1 (A) by range: N+ (A) = R(A).
Proof. Note that AT A is idempotent, I — AT A is symmetric and idempotent.

NEA) = N = NATAF = [R(I - ATA)F = N(I - AT A)
= R(I-(I—A+A))=R(ATA) = R ((A)(A)F) = R(A).

Ex5: RH(A) = N(A) = N ((A)TA) = N(AAT) = R(I — AA™).
Ex6: N1(A) =R(A) = R(AT) = R(ATA).



