L05 Moore-Penrose inverses

1. Relations of inverses

(1) Inverses

Three types of inverses: A^L , A^R , A^{-1} . They may not exist. When they are existent, A^{-1} is unique, but the other two may not be unique.

Two types of generalized inverses, A^- and A^+ . They all exist. A^+ is unique. $A^+ \in A^-$.

- (2) Three cases
 - (i) If $A^L \neq \emptyset$, $A^+ \in A^- = A^L$. (No assumption on the existence for A^R and A^{-1} .)
 - (ii) If $A^R \neq \emptyset$, $A^+ \in A^- = A^R$.
 - (iii) If A^{-1} exists, $A^{-1} = A^{+} = A^{-} = A^{L} = A^{R}$.
 - **Pf:** (i) $A^+ \in A^-$: trivial.

$$A^{-} \subset A^{L} \colon B \in A^{-} \Longrightarrow ABA = A \Longrightarrow A^{L}ABA = A^{T}A \Longrightarrow BA = I$$
$$\Longrightarrow B \in A^{L}.$$
$$A^{-} \supset A^{L} \colon B \in A^{L} \Longrightarrow BA = I \Longrightarrow ABA = A \Longrightarrow B \in A^{-}.$$

(iii) By (i) and (ii) $A^{-} = A^{L} = A^{R}$. Now we show $A^{+} = A^{-} = A^{-1}$.

 $A^+ \in A^-$: trivial.

$$A^{-} \subset A^{-1} \colon B \in A^{-} \Longrightarrow ABA = A \Longrightarrow \left\{ \begin{array}{l} A^{-1}ABA = A^{-1}A \\ ABAA^{-1} = AA^{-1} \end{array} \right.$$

$$\Longrightarrow \left\{ \begin{array}{ll} BA = I \\ AB = I \end{array} \right. \Longrightarrow B = A^{-1}.$$

 $A^{-1} \in A^+$: $AA^{-1}A = A$, $A^{-1}AA^{-1} = A^{-1}$, $AA^{-1} = I$ is symmetric and $A^{-1}A = I$ is symmetric. So $A^{-1} \in A^+$.

Ex1: If $A \in \mathbb{R}^{m \times n}$ has full column rank, then $A^+A = A^-A = A^LA = I_n$. If $A \in \mathbb{R}^{m \times n}$ has full row rank, then $AA^+ = AA^- = AA^R = I_m$.

- (3) Recall that rank(AA') = rank(A'A) = rank(A).
 - (i) If A has full column rank, then A'A is full rank square matrix. So $(A'A)^{-1}$ exists and $(A'A)^{-1}A' = A^+$.
 - (ii) If A has full row rank, then AA' is full rank square matrix. So $(AA')^{-1}$ exists and $A'(AA')^{-1} = A^+.$

Ex2: In regression you probably see the claim that $\hat{\beta} = (X'X)^{-1}X'y$ is a least square estimator for β . Now we know that $\widehat{\beta} = X^+y$ and we assume X has full column rank so that $\widehat{\beta} = (X'X)^{-1}X'y$.

(4) If A is idempotent, i.e., $A^2 = A$, then rank(A) = tr(A).

Pf: By the compact SVD for A with rank(A) = r, $A = U_I \Delta_r V_I'$. Then

$$A^{2} = A \iff U_{I} \Delta_{r} V_{I}' U_{I} \Delta_{r} V_{I}' = U_{I} \Delta_{r} V_{I}' \iff \Delta_{r} V_{I}' U_{I} = I_{r}.$$

So $\operatorname{tr}(A) = \operatorname{tr}(U_I \Delta_r V_I') = \operatorname{tr}(\Delta_r V_I' U_I) = \operatorname{tr}(I_r) = r = \operatorname{rank}(A)$.

1

Ex3: AA^- , A^-A , $I-AA^-$ and $I-A^-A$ are all idempotent. So, rank $(A^-A) = \operatorname{tr}(A^-A)$, $rank(AA^{-}) = tr(AA^{-}), rank(I - A^{-}A) = tr(I - A^{-}A)$ and rank $(I - AA^{-}) = tr(I - AA^{-})$.

- 2. Simple A^+
 - (1) If A is symmetric and idempotent, i.e., $A' = A = A^2$, then $A^+ = A = AA^+ = A^+A$
 - **Pf:** With G = A, AGA = AAA = A; GAG = AAA = A = G; AG = AA = A is symmetric; GA = AA = A is symmetric. Thus $A^+ = G = A$ and $AA^+ = A = A^+A$.
 - **Ex4:** For $A \in \mathbb{R}^{m \times n}$, AA^+ , A^+A , $I AA^+$ and $I A^+A$ are symmetric and idempotent. So $(AA^+)^+ = AA^+$, $(A^+A)^+ = A^+A$, $(I AA^+)^+ = I AA^+$ and $(I A^+A)^+ = I A^+A$.
 - (2) If A has orthonormal columns, i.e., A'A = I, then $A^+ = A' \in A^- = A^L$; If A has orthonormal rows, i.e., AA' = I, then $A^+ = A' \in A^- = A^R$.

Pf: For the 1st one check condition (ii): Let B = A', then BAB = A'AA' = A' = B.

(3) If the columns of A are perpendicular to the columns of B, i.e., A'B = 0, then

$$(A, B)^+ = {A^+ \choose B^+}$$
 so $(A, B)(A, B)^+ = AA^+ + BB^+$.

If the rows of A are perpendicular to the rows of B, i.e., AB' = 0, then

$$\begin{pmatrix} A \\ B \end{pmatrix}^+ = (A^+, B^+) \text{ so } \begin{pmatrix} A \\ B \end{pmatrix}^+ \begin{pmatrix} A \\ B \end{pmatrix} = A^+A + B^+B.$$

Pf: For the 1st one show (i). With A'B = 0,

 $A^+B = (A^+AA^+)B = A^+(AA^+)'B = A^+(A^+)'A'B = 0$. Similarly $B^+A = 0$.

So
$$(A, B) \begin{pmatrix} A^+ \\ B^+ \end{pmatrix} (A, B) = (A, B) \begin{pmatrix} A^+ A & 0 \\ 0 & B^+ B \end{pmatrix} = (A, B).$$

Ex5:
$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^+ = ((A, 0)^+, (0, B)^+) = \begin{pmatrix} A^+ & 0 \\ 0 & B^+ \end{pmatrix}.$$

- 3. Cases of $(AB)^{+} = B^{+}A^{+}$
 - (1) Recall
 - (i) If A = 0, then $(AB)^+ = B^+A^+ = 0$. If B = 0, then $(AB)^+ = B^+A^+ = 0$.
 - (ii) If A = B', i.e., B = A', then $(AB)^+ = B^+A^+ = (A')^+A^+ = B^+(B')^+$.
 - (2) If A has orthonormal columns, then $(AB)^+ = B^+A^+$.

If B has orthonormal rows, then $(AB)^+ = B^+A^+$.

Pf: For 1st one show (iii).

A has orthonormal columns. So $A^+ = A'$ and A'A = I.

- (iii) $(AB)(B^+A^+) = A(BB^+)A'$ is symmetric.
- (3) If A has full column rank and B has full row rank, then $(AB)^+ = B^+A^+$.
 - Pf: For 1st one show (ii).

A has full column rank and B has full row rank. So $A^+A = I$ and $BB^+ = I$.

(ii) $(B^+A^+)(AB)(B^+A^+) = B^+IIA^+ = B^+A^+$.

L06: Orthogonal complement of space

- 1. Two types of spaces
 - (1) Two spaces

For $A \in \mathbb{R}^{m \times n}$, y = Ax is a linear transformation of $x \in \mathbb{R}^n$ to $y \in \mathbb{R}^m$ with range

$$Range(A) = R(A) = \{ y = Ax \in \mathbb{R}^m : x \in \mathbb{R}^n \}.$$

This range is span of the columns of A also called the column space of A denoted as $\operatorname{Span}(A) = C(A)$ with $\dim[\mathcal{R}(A)] = \operatorname{rank}(A)$.

The Kernel of the transformation also called the null space of A,

$$\mathcal{N}(A) = \{ x \in R^n : Ax = 0 \},$$

is a subspace of \mathbb{R}^n with $\dim[\mathcal{N}(A)] = n - \operatorname{rank}(A)$.

Comment: For liner transformation f,

$$\dim[\operatorname{domain}(f)] = \dim[\operatorname{Kernel}(f)] + \dim[\operatorname{Range}(f)].$$

With y = Ax: n = [n - rank(A)] + rank(A).

(2) Expressions of $\mathcal{R}(A)$

For
$$A \in \mathbb{R}^{m \times n}$$
, (i) $\mathcal{R}(A) = \mathcal{R}(AA^{-})$ (ii) $\mathcal{R}(A) = \mathcal{R}(AA')$ (iii) $\mathcal{R}(A) = \mathcal{R}((A')^{+})$

Proof. Note that $\mathcal{R}(AB) \subset \mathcal{R}(A)$ since $y \in \mathcal{R}(AB) \Longrightarrow y = ABx = A(Bx) \in \mathcal{R}(A)$.

- (i) $\mathcal{R}(A) = \mathcal{R}(AA^-A) \subset \mathcal{R}(AA^-) \subset \mathcal{R}(A)$.
- $(ii)\mathcal{R}(A) = \mathcal{R}(AA^{+}A) = \mathcal{R}(A(A^{+}A)') = \mathcal{R}(AA'(A^{+})') \subset \mathcal{R}(AA') \subset \mathcal{R}(A).$
- (iii) $\mathcal{R}(A) = \mathcal{R}((AA^+)') \subset \mathcal{R}((A^+)') = \mathcal{R}((A^+AA^+)') = \mathcal{R}(AA^+(A^+)') \subset \mathcal{R}(A)$.

Ex1: For $A \in \mathbb{R}^{m \times n}$, $\mathcal{R}(A) = \mathcal{R}(AA^+)$ where AA^+ is symmetric and idempotent.

(3) Expressions of $\mathcal{N}(A)$

For
$$A \in \mathbb{R}^{m \times n}$$
, (i) $\mathcal{N}(A) = \mathcal{N}(A^{-}A)$ (ii) $\mathcal{N}(A) = \mathcal{N}(A'A)$ (iii) $\mathcal{N}(A) = \mathcal{N}((A^{+})')$.

Proof. Note that $\mathcal{N}(A) \subset \mathcal{N}(BA)$ since

$$x \in \mathcal{N}(A) \Longrightarrow Ax = 0 \Longrightarrow BAx = 0 \Longrightarrow x \in \mathcal{N}(BA).$$

- (i) $\mathcal{N}(A) \subset \mathcal{N}(A^-A) \subset \mathcal{N}(AA^-A) = \mathcal{N}(A)$.
- (ii) $\mathcal{N}(A) \subset \mathcal{N}(A'A) \subset \mathcal{N}((A^+)'A'A) = \mathcal{N}((AA^+)'A) = \mathcal{N}(A)$.

(iii)
$$\mathcal{N}(A) = \mathcal{N}((A^+A)') \subset \mathcal{N}((A^+)'A'(A^+)') = \mathcal{N}((A^+)') \subset \mathcal{N}(A'(A^+)')$$

= $\mathcal{N}(A^+A) = \mathcal{N}(A)$.

Ex2: For $A \in \mathbb{R}^{m \times n}$, $\mathcal{N}(A) = \mathcal{N}(A^+A)$ where A^+A is symmetric itempotent.

- 2. Cross expressions
 - (1) Condition for cross expression If D is idempotent, i.e., $D^2 = D$, then $\mathcal{R}(D) = \mathcal{N}(I - D)$ and $\mathcal{N}(D) = \mathcal{R}(I - D)$.

Proof Only show $\mathcal{R}(D) = \mathcal{N}(I - D)$

$$\subset: y \in \mathcal{R}(D) \Longrightarrow y = Dx \Longrightarrow (I - D)y = Dx - D^2x = 0 \Longrightarrow y \in \mathcal{N}(I - D).$$

 $\supset: y \in \mathcal{N}(I - D) \Longrightarrow (I - D)y = 0 \Longrightarrow y = Dy \in \mathcal{R}(D).$

(2) Expressing $\mathcal{R}(A)$ by null space

For
$$A \in \mathbb{R}^{m \times n}$$
, $\mathcal{R}(A) = \mathcal{R}(AA^{-}) = \mathcal{N}(I_m - AA^{-})$.

Ex3:
$$\mathcal{R}(A) = \mathcal{R}(AA^+) = \mathcal{N}(I_m - AA^+).$$

(3) Expressing $\mathcal{N}(A)$ by range

$$\mathcal{N}(A) = \mathcal{N}(A^{-}A) = \mathcal{R}(I_n - A^{-}A).$$

Ex4:
$$\mathcal{N}(A) = \mathcal{N}(A^+A) = \mathcal{R}(I_n - A^+A).$$

- 3. Orthogonal complements
 - (1) Orthogonal complements

For $A \in \mathbb{R}^{m \times n}$, the orthogonal complement of $\mathcal{R}(A)$,

$$\mathcal{R}^{\perp}(A) = \{ y \in \mathbb{R}^m : \langle y, z \rangle = 0 \text{ for all } z \in \mathcal{R}(A) \}$$

is also a space in \mathbb{R}^m . The orthogonal complement of $\mathcal{N}(A)$,

$$\mathcal{N}^{\perp}(A) = \{ y \in \mathbb{R}^n : \langle y, z \rangle = 0 \text{ for all } z \in \mathcal{N}(A) \}$$

is a space in \mathbb{R}^n .

(2) Expressing $\mathcal{R}^{\perp}(A)$ by null space:

$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A').$$

Proof. $\mathcal{R}^{\perp}(A) = \mathcal{N}(A')$ since

$$y \in \mathcal{R}^{\perp}(A) \iff \langle y, z \rangle = 0 \text{ for all } z \in \mathcal{R}(A) \iff \langle y, Ax \rangle = 0 \text{ for all } x \in R^n \iff x'A'y = 0 \text{ for all } x \in R^n \iff A'y = 0 \iff y \in \mathcal{N}(A').$$

So
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A')$$
.

(3) Expressing $\mathcal{N}^{\perp}(A)$ by range:

$$\mathcal{N}^{\perp}(A) = \mathcal{R}(A').$$

Proof. Note that A^+A is idempotent, $I - A^+A$ is symmetric and idempotent.

$$\mathcal{N}^{\perp}(A) = [\mathcal{N}(A)]^{\perp} = [\mathcal{N}(A^{+}A)]^{\perp} = [\mathcal{R}(I - A^{+}A)]^{\perp} = \mathcal{N}(I - A^{+}A)$$

$$= \mathcal{R}(I - (I - A^{+}A)) = \mathcal{R}(A^{+}A) = \mathcal{R}((A')(A')^{+}) = \mathcal{R}(A').$$

Ex5:
$$\mathcal{R}^{\perp}(A) = \mathcal{N}(A') = \mathcal{N}\left((A')^{+}A'\right) = \mathcal{N}(AA^{+}) = \mathcal{R}(I - AA^{+}).$$

Ex6:
$$\mathcal{N}^{\perp}(A) = \mathcal{R}(A') = \mathcal{R}(A^+) = \mathcal{R}(A^+A)$$
.