
L03: Eigenvalue decomposition

1. Eigenvalue decomposition

(1) Eigenvalues and eigenvectors

x ∈ Rn is an eigenvector wrt the eigenvalue λ for A ∈ Rn×n def⇐⇒ Ax = λx, x ̸= 0.
λ is an eigenvalue for A ⇐⇒ Ax = λx, x ̸= 0 ⇐⇒ (A− λI)x = 0, x ̸= 0

⇐⇒ The columns of A− λI ∈ Rn×n are LD
∗⇐⇒ |A− λI| = 0

⇐⇒ λ is a solution to the characteristic equation.

With eigenvalue λ, Sλ(A)
def
== {x ∈ Rn : Ax = λx} is a subspace of Rn since

x, y ∈ Sλ(A) =⇒ Ax = λx and Ay = λy =⇒ A(αx+ βy) = λ(αx+ βy)
=⇒ αx+ βy ∈ Sλ(A).

All vectors in Sλ(A) but 0 are the eigenvectors of A wrt to eigenvalue λ. This space is
called the eigen-space of A wrt to λ.

(2) Eigenvalue decomposition
For A′ = A ∈ Rn×n, there are P and Λ such that A = PΛP ′ called the EVD of A. Here
P ∈ Rn×n with P ′ = P−1 so that P ′P = I = PP ′, i.e., the columns and the rows of P
are orthonormal. Such P is called an orthogonal matrix. Λ is a diagonal matrix. From
A = PΛP ′ ⇐⇒ AP = PΛ ⇐⇒ A(P1, .., Pn) = (P1, ..., Pn)Λ ⇐⇒ APi = λiPi ∀ i
the diagonal elements of Λ are the eigenvalues of A, and columns of P are n orthonormal
eigenvectors.

(3) A is a LC of orthonormal matrices
A = PΛP ′ =

∑n
i=1 λiPiP

′
i is a LC of matrices in D = [P1P

′
1, ..., PnP

′
n] ⊂ Rn×n. From

⟨PiP
′
i , PjP

′
j⟩ = tr(PjP

′
jPiP

′
i ) =

{
0 i ̸= j
1 i = j

, D is an orthonormal basis for Span(D).

Clearly A ∈ Span(D).

(4) Compact form
rank(A) = rank(PΛP ′) = rank(Λ) = # of non-zero eigenvalues.

With rank(A) = r, Λ =

(
Λr 0
0 0

)
where Λr = diag(λ1, .., λr), λi ̸= 0, i = 1, ..., r.

A = (PI , PII)

(
Λr 0
0 0

)
(PI , PII)

′ = PIΛrP
′
I =

∑r
i=1 λiPiP

′
i is the compact form of the

EVD where PI ∈ Rn×r has orthonormal columns.

Ex1: Real symmetric matrix A ∈ Rn×n has real eigenvalues and n orthgonal eigenvectors.

Ex2: A and B are similar if A = XBX−1. Similar matrices share characteristic polynomial
and hence share all eigenvalues.
|A− λI| = |X(B − λI)X−1| = |X| |B − λI| |X−1| = |B − λI|. By EVD A = PΛP ′.
In EVD A = PΛP ′, A and Λ are similar.

2. Definite and semi-definite matrices

(1) Definitions and notations
With A′ = A ∈ Rn×n, x′Ax is a quadratic form of x ∈ Rn.
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A is


positive definite denoted as A > 0
non-negative definite denoted as A ≥ 0
negative definite denoted as A < 0
non-positive definite denoted as A ≤ 0

if x′Ax


> 0
≤ 0
< 0
≤ 0

for all 0 ̸= x ∈ Rn

(2) A sufficient and necessary condition
Let A = PΛP ′ be the EVD for A where Λ = diag(λ1, ..., λn). Then
A > 0 ⇐⇒ λi > 0 for all i; A ≥ 0 ⇐⇒ λi ≥ 0 for all i;
A < 0 ⇐⇒ λi < 0 for all i; A ≤ 0 ⇐⇒ λi ≤ 0 for all i.

Proof. Only show the first one.

⇒ : A > 0 =⇒ 0 < P ′
iAPi = P ′

iPΛP ′Pi = e′iΛei = λi for al i.

⇐ : 0 ̸= x ∈ Rn =⇒ y = P ′x ̸= 0 =⇒ x′Ax = y′Λy =
∑

i λiy
2
i > 0. So A > 0.

(3) A1/2 and A−1/2

For A = PΛP ′ ≥ 0, define Λ1/2 = diag(λ
1/2
1 , ..., λ

1/2
n ) and A1/2 = PΛ1/2P ′. Then

A1/2 ≥ 0 and (A1/2)2 = A.

For A = PΛP ′ > 0, define Λ−1/2 = diag(λ
−1/2
1 , ..., λ

−1/2
n ) and A−1/2 = PΛ−1/2P ′. Then

A−1/2 > 0 and (A−1/2)2 = A−1.

(4) Simple relations
A > 0 ⇐⇒ −A < 0; A ≥ 0 ⇐⇒ −A ≤ 0; A < 0 ⇐⇒ −A > 0; A ≤ 0 ⇐⇒ −A ≥ 0.
Proof. A > 0 ⇐⇒ x′Ax > 0 for all x ̸= 0 ⇐⇒ x′(−A)x < 0 for all x ̸= 0 ⇐⇒ −A < 0.

3. Some properties

(1) Extended notations

A > B ⇐⇒ A−B > 0 ⇐⇒ B −A < 0 ⇐⇒ B < A
A ≥ B ⇐⇒ A−B ≥ 0 ⇐⇒ B −A ≤ 0 ⇐⇒ B ≤ A

(2) A ≤ A; A ≤ B and B ≤ C =⇒ A ≤ C.

Proof. Show the second one. For 0 ̸= x ∈ Rn,
x′(A− C)x = x′[(A−B) + (B − C)]x = x′(A−B)x+ x′(B − C)x ≤ 0. So A ≤ C.

Comments: ≤ is reflexive and transitive, and hence is a pre-order.

(3) A1 ≤ B1 and A1 ≤ B2 =⇒ αA1 + βB1 ≤ αA2 + βB2 for all α, β ≥ 0.
Proof. Skipped. Comment: ≤ is preservable under LC with non-negative coefficients.

(4) A ≤ B =⇒ CAC ′ ≤ CBC ′.

Proof. For 0 ̸= x ∈ Rn, let y = C ′x. Then x′(CAC ′ − CBC ′)x = y′(A−B)y ≤ 0.
So CAC ′ − CBC ′ ≤ 0, i.e., CAC ′ ≤ CBC ′.

Comment: In (2), (3) and (4) ≤ can be replaced by ≥.

Ex3: p64 1. A′ = A ∈ Rn×n, B ∈ Rn×m with rank(B) = n such that (BB′)−1 exists.
Show that Im ≥ B′AB ⇐⇒ (BB′)−1 ≥ A.

⇒: Im ≥ B′AB =⇒ [(BB′)−1B]Im[(BB′)−1B]′ ≤ [(BB′)−1B]B′AB[(BB′)−1B]′

=⇒ (BB′)−1 ≥ A.

⇐: (BB′)−1 ≥ A =⇒ D = B′(BB′)−1B ≥ B′AB. D′ = D = D2 = PΛP ′ by EVD.
D2 = D =⇒ Λ2 = Λ =⇒ λi = 0, 1 =⇒ I ≥ Λ =⇒ I = PP ′ ≥ PΛP ′ = D.
So I ≥ D ≥ B′AB, i.e., I ≥ B′AB by transitivity.

Notes: In p64 1, A > 0 is not needed. In p65 5, λi > 0 should be λi ̸= 0.
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L04 Singular value decomposition and generalized inverse

1. Singular value decomposition

(1) Singular value decomposition

For A ∈ Rm×n with rank(A) = r, A = (UI , UII)

(
∆ 0
0 0

)
(VI , VII)

′ = UI∆V ′
II is the

SVD where U = (UI , UII) ∈ Rm×m and V = (VI , VII) ∈ Rn×n are orthogonal (U ′ = U−1

and V ′ = V −1), UI ∈ Rm×r and VI ∈ Rn×r (U ′
IUI = Ir = V ′

IVII),

(
∆ 0
0 0

)
∈ Rm×n

with ∆ = diag(δ1, ..., δr), δ1 ≥ · · · ≥ δr > 0.

(2) Singular values
0 ≤ AA′ ∈ Rm×m, 0 ≤ A′A ∈ Rn×n and A share ranks r.

The EVD AA′ = (UI , UII)

(
∆2 0
0 0

)
(UI , UII)

′ = UI∆
2U ′

I and

the EVD A′A = (VI , VII)

(
∆2 0
0 0

)
(VI , VII)

′ = VI∆
2V ′

I share positive eigenvalues

δ21 ≥ · · · ≥ δ2r > 0 in ∆2 = diag(δ21 , ..., δ
2
r ).

δ1 ≥ · · · ≥ δr > 0 are called the positive singular values of A and ∆ = diag(δ1, ..., δr)
can be obtained by either EVD of AA′ or EVD of A′A.

(3) Construct SVD for A

(i) Method I

By EVD for AA′, AA′ = (UI UII)

(
∆2 0
0 0

)
(UI , UII)

′. Let VI = A′UI∆
−1. Then

V ′
IVI = Ir and A = UI∆V ′

I .

(ii) Method II

By EVD for A′A, A′A = (VI , VII)

(
∆2 0
0 0

)
(VI VII)

′. Let UI = AVI∆
−1. Then

U ′
IUI = Ir and A = UI∆V ′

I .

(iii) Comments
In SVD ∆ is unique. But UI and VI are not unique. Specifically VI in (i) may not
be VI in (ii), and UI in (ii) may not be UI in (i)

(4) A LC of orthonormal matrices
By SVD A = UI∆V ′

I =
∑r

i=1 δiUiV
′
i is a LC of U1V

′
1 , · · ·UrV

′
r , a set of r orthonormal

matrices since

⟨UiV
′
i , UjV

′
j ⟩ = tr(VjU

′
jUiVi) =

{
1 i = j
0 i ̸= j

2. Generalized inverse

(1) Generalized inverse A− and Moore-Penrose inverse A+

For A ∈ Rm×n the conditions on G ∈ Rn×m

(i): AGA = A, (ii): GAG = G, (iii): (AG)′ = AG, (iv): (GA)′ = GA

are Penrose conditions. Matrix G satisfying (i) is called a generalized inverse of A
denoted by A−. Matrix G satisfying all four conditions is Moore-Penrose inverse of A
denoted by A+.
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(2) Generalized inverses A−

Let A = U

(
∆ 0
0 0

)
V ′ be the SVD for A. Then

A− =

{
V

(
∆−1 H12

H21 H22

)
U ′ : H12, H21, H22

}
.

Proof. ⊂: G ∈ A− =⇒ AGA = A. Let V ′GU =

(
H11 H12

H21 H22

)
. Then ABA = A implies

that ∆H11∆ = ∆. Hence H11 = ∆−1. Thus G = V

(
∆−1 H12

H21 H22

)
U ′.

⊃: With G = V

(
∆−1 H12

H21 H22

)
U ′, direct computation shows AGA = A. So G ∈ A−.

(3) Moore-Penrose inverse A+

With the SVD form for A, A+ = V

(
∆−1 0
0 0

)
U ′.

Proof. AGA = A ⇐⇒ G = V

(
∆−1 H12

H21 H22

)
U ′. Now

GAG = G, (AG)′ = AG, (GA)′ = GA ⇐⇒ H12 = 0, H21 = 0, H22 = 0

⇐⇒ G = V

(
∆−1 0
0 0

)
U.

(3) Comment: A+ ∈ A−.

3. Some Moore-Penrose inverses

(1) 0+m×n = 0n×m, (A′)+ = (A+)′ For 0 ̸= x ∈ Rn, x+ = x′

x′x and (x′)+ = x
x′x .

Ex1: (AB)+ ̸= B+A+ example[
(1, 0)

(
1
2

)]+
= 1+ = 1. But

(
1
2

)+

(1, 0)+ = (1, 2)
5

(
1
0

)
= 1

5 ̸= 1.

(2) (A′A)+ = A+(A′)+ and (AA′)+ = (A′)+A+

Proof. For (A′A)+ = A+(A′)+ check (iv).
A+(A′)+A′A = A+(A+)′A′A = A+(AA+)′A = A+AA+A = A+A is symmetric.

(3) Simplification: (A′A)+A′ = A+ and A′(AA′)+ = A+

Proof. Only show the first one.
(A′A)+A′ = A+(A′)+A′ = A+(A+)′A′ = A+(AA+)′ = A+AA+ = A+.

Ex2: A(A′A)+A′ = AA+ and A′(AA′)+A = A+A.

(4) (A′A)−, (AA′)−, (A′A)−A′ and A′(AA′)− exist but may not be unique.
But A(A′A)−A′ = AA+ and A′(AA′)−A = A+A.

Proof Show the first one only
A(A′A)−A′ = AA+A(A′A)−(AA+A)′ = (AA+)′A(A′A)−A′(AA+)′

= (A′)+(A′A)(A′A)−(A′A)A+ = (A′)+(A′A)A+ = (A+)′A′AA+

= (AA+)′AA+ = AA+AA+ = AA+
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