L03: Eigenvalue decomposition

1. Eigenvalue decomposition

(1)

Eigenvalues and eigenvectors

x € R™ is an eigenvector wrt the eigenvalue A for A € R™*"™ g Ax =Xz, x # 0.
A is an eigenvalue for A <— Ax =Xz, 2 #40<= (A—- X))z =0,2#0
<= The columns of A — A\I € R"*™ are LD
& |A-X|=0
<= ) is a solution to the characteristic equation.

With eigenvalue A, Sy(A) el {z € R": Az = Az} is a subspace of R" since

z,y € S\(A) = Az = Az and Ay = \y = A(azx + By) = AMazx + By)
— ax+ py € S\(4).

All vectors in Sy(A) but 0 are the eigenvectors of A wrt to eigenvalue A. This space is

called the eigen-space of A wrt to A.

Eigenvalue decomposition

For A’ = A € R"™ ", there are P and A such that A = PAP’ called the EVD of A. Here

P € R™" with P’ = P71 so that PP = I = PP’, i.e., the columns and the rows of P

are orthonormal. Such P is called an orthogonal matrix. A is a diagonal matrix. From
A=PAP <= AP=PA<= A(P,.,P,)=(P,...,P)A <<= AP, = \;P,Vi

the diagonal elements of A are the eigenvalues of A, and columns of P are n orthonormal

eigenvectors.

A is a LC of orthonormal matrices

A= PAP =5%" NP P/ is a LC of matrices in D = [P, P}, ..., P,P}] C R"*". From
(PP, PiP)) = tr(P; P[P P;)) = { (1) zij , D is an orthonormal basis for Span(D).
Clearly A € Span(D).

Compact form
rank(A) = rank(PAP’) = rank(A) = # of non-zero eigenvalues.

With rank(A) =r, A = <Ar 0) where A, = diag(A1, .., \r), i 0,1 =1,....7.

0 O
A O , , T ..
A= (Py, Prp) 0 0 (Pr, Prr)’ = PiAPp = )iy \iP; P/ is the compact form of the

EVD where P; € R™*" has orthonormal columns.

Ex1: Real symmetric matrix A € R™*" has real eigenvalues and n orthgonal eigenvectors.

Ex2: A and B are similar if A = XBX~!. Similar matrices share characteristic polynomial

and hence share all eigenvalues.
|A—X|=|X(B- X)X =|X||B-M||X"!=|B- M| By EVD A= PAP'.
In EVD A= PAP’, A and A are similar.

2. Definite and semi-definite matrices

(1)

Definitions and notations
With A" = A € R"*", 2’/ Az is a quadratic form of x € R".



positive definite denoted as A > 0 >0
non-negative definite denoted as A >0 . <0
negati\i definite denoted as A < 0 N if 2’ Az 2 0 for all 0 7 z € R
non-positive definite denoted as A < 0 <0
(2) A sufficient and necessary condition
Let A = PAP’ be the EVD for A where A = diag(\1, ..., A). Then
A>0<= \; >0 for all 4; A>0<= A >0 for all
A <0< A\ <0 for all ; A <0< )\ <0 for all 7.
Proof. Only show the first one.
= : A>0= 0< P/AP, = P/PAP'P;, = €}Ae; = \; for al i.
c:0£reER"=y=Pr#0= Az =y Ay=3, \iy? >0. So A> 0.
(3) AY2 and A~1/?
For A = PAP' > 0, define A2 = diag(\/?,...,\/%) and AY/2 = PAY2P’. Then
AY2 >0 and (A'/2)2 = A.
For A = PAP' > 0, define A~1/2 = diag(A; /%, ..., A\n/?) and A=Y/2 = PA=1/2P'. Then
A7Y2 > 0and (A71/2)2 = AL
(4) Simple relations
A>0<= —-A<0; A>20<= —-A<0; A<0<= -A>0, A0« —-A>0.
Proof. A>0<=2/Ax >0forallz #0 <= 2/(—A)z <0 forallx #0 <= —A < 0.

A is

3. Some properties
(1) Extended notations

A>B<—=A-B>0«<—=B-A<0«<=B<A
A>B<+—= A-B>0«—=B-A<0<=B<A

(2) A< A A<Band B<C= A<C.
Proof. Show the second one. For 0 # z € R",
Z(A-Clz=2[(A—B)+(B-C)lx=2'(A-B)x+2/(B-C)x <0. So A<C.
Comments: < is reflexive and transitive, and hence is a pre-order.
(3) A1 < By and A1 < By = aA; + B1 < als + 8B for all o, 8 > 0.
Proof. Skipped. Comment: < is preservable under LC with non-negative coefficients.
(4) A< B= CAC' < CBC(C".
Proof. For 0 # x € R", let y = C'z. Then 2/(CAC" — CBC")x = y'(A — B)y < 0.
So CAC" — CBC' <0, ie., CAC' < CBC".
Comment: In (2), (3) and (4) < can be replaced by >.

Ex3: p64 1. A’ = A€ RV, B € R™™ with rank(B) = n such that (BB’)~! exists.
Show that I, > B'AB <= (BB')~"! > A.
=: I, > B'AB = [(BB')~'B|I,[(BB)"'B) < [(BB')~'B|B’AB[(BB')~'B]
— (BB)"' > A.
< (BB’)*1 >A=— D= B’(BB’)*lB > B'AB. D' = D = D? = PAP' by EVD.
D?=D=AN=A=)\=0,1=—=1>A=1=PP >PAP =D.
SoI>D > B'AB, i.e., I > B'AB by transitivity.
Notes: In p64 1, A > 0 is not needed. In p65 5, A\; > 0 should be \; # 0.



L04 Singular value decomposition and generalized inverse

1. Singular value decomposition

(1)

Singular value decomposition

For A € R™*™ with rank(A) = r, A = (U, Ujy) <€ 8) (V1, Vir) = UrAV]; is the

SVD where U = (Uy, Urr) € R™™ and V = (V, Vi7) € R™™ are orthogonal (U’ = U~}
and V/ = V1), Uy € R™" and V; € RV (UU; = I, = VIVyy), <§ 8) e Rmxn
with A = diag(51, ---757’)7 60 >-->06,>0.

Singular values
0<AA' e R (0 < A’A € R"™™ and A share ranks r.

2
The EVD AA/ = (U[, U]]) (AO 8) (U[’ UII)/ = UIA2U} and

2
the EVD A’A = (V], VU) <A0 8

62 >--->62>01in A? = diag(6?, ..., 02).
d1 > -+ > &, > 0 are called the positive singular values of A and A = diag(dy, ..., 0r)
can be obtained by either EVD of AA’ or EVD of A’A.

Construct SVD for A

(i) Method I
By EVD for AA", AA" = (U;Upy) (
V/Vr = I, and A = U;AV].

(ii) Method II
By EVD for A’A, A’A = (Vy, Vip) <

UUr =1, and A =U[AV].

(iii) Comments
In SVD A is unique. But Uy and V; are not unique. Specifically V7 in (i) may not
be V7 in (ii), and Uy in (ii) may not be Uy in (i)

A LC of orthonormal matrices

By SVD A = U;AV] = 377 6U;V/ is a LC of U1 V{,---U,V/, a set of r orthonormal

matrices since

Vi, Vi) = VIAZVI’ share positive eigenvalues

A2 0

0 0) (U], U[[)/. Let Vi = AIU[Afl. Then

A2

0 8) (ViVir)'. Let Uy = AV;A~Y. Then

1 i=j

i o) =) = { 5 1

2. Generalized inverse

(1)

Generalized inverse A~ and Moore-Penrose inverse A1
For A € R™*™ the conditions on G € R**™

(i) AGA = A, (ii): GAG = G, (iii): (AG) = AG, (iv): (GA) = GA

are Penrose conditions. Matrix G satisfying (i) is called a generalized inverse of A
denoted by A~. Matrix G satisfying all four conditions is Moore-Penrose inverse of A
denoted by AT.



(2) Generalized inverses A~

Let A=U (A 0) V' be the SVD for A. Then

0 O
_ A_l H12> y }
A-=1v U': Hya, Hay, Hoo b .
{ <H21 HQQ 12 21 22

Hy1 Hypo

Proof. C: Ge A~ — AGA=A. Let V'GU = (
Hy1 Hao

) . Then ABA = A implies
1
b = A Hence fiy o T 6= v (5 1201
Ho1  Hoo
Ail H12
Hop  Hopo

(3) Moore-Penrose inverse A"

-1
With the SVD form for A, At =V <AO 8) U'.

A_l H12 ,
Ho H22> U’. Now
GAG = G, (AG)/ = AG, (GA)/ =GA — Hy = 0, Hy = 0, Hos =0

—1
<— G:V(A 0>U.

D: WithG =V ( > U’, direct computation shows AGA = A. SoG € A™.

Proof. AGA:A<:>G:V<

0 0
(3) Comment: AT € A™.

3. Some Moore-Penrose inverses

(1) Ojixn = Onxms (A)T = (AT) For0£x€R" 2t = % a
Ex1: (AB)"T # BT AT example

[(1, 0) (;)T =17 =1. But <;>+ (1,0t = L2 <(1)) =11

(2) (AA)T =AT(A)T and (AA)T = (A)TAT
Proof. For (A’A)" = AT(A")* check (iv).
AT(ANTAA=AT(AT)A'A= AT (AAT)Y A= ATAATA = AT A is symmetric.
(3) Simplification: (A’A)TA" = AT and A'(AA)t = AT
Proof. Only show the first one.
(ATA)TA! = A (A A = AT(AYY A = AT (AAT) = AT AAT = AY,
Ex2: A(AA)TA = AAT and A/(AA)TA = ATA.
(4) (A’A)~, (AA")~, (AA)~ A" and A'(AA")~ exist but may not be unique.
But A(A’A)" A" = AAT and A/(AA")"A= AT A.
Proof Show the first one only
A(ATA)~A = AATAAA)"(AATA) = (AATYA(A'A)- A (AATY
= (A)T(AA)(AA)~(AA)AT = (A)T(AA)AT = (AT)YAAAT
= (AAT)YAAT = AATAAT = AAT
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