L03: Eigenvalue decomposition

- 1. Eigenvalue decomposition
 - (1) Eigenvalues and eigenvectors

 $x \in R^n$ is an eigenvector wrt the eigenvalue λ for $A \in R^{n \times n} \stackrel{def}{\iff} Ax = \lambda x, \ x \neq 0$. λ is an eigenvalue for $A \iff Ax = \lambda x, \ x \neq 0 \iff (A - \lambda I)x = 0, \ x \neq 0$ \iff The columns of $A - \lambda I \in R^{n \times n}$ are LD $\stackrel{*}{\iff} |A - \lambda I| = 0$ $\iff \lambda$ is a solution to the characteristic equation.

With eigenvalue λ , $S_{\lambda}(A) \stackrel{def}{=} \{x \in \mathbb{R}^n : Ax = \lambda x\}$ is a subspace of \mathbb{R}^n since

$$x, y \in S_{\lambda}(A) \implies Ax = \lambda x \text{ and } Ay = \lambda y \Longrightarrow A(\alpha x + \beta y) = \lambda(\alpha x + \beta y)$$

 $\Longrightarrow \alpha x + \beta y \in S_{\lambda}(A).$

All vectors in $S_{\lambda}(A)$ but 0 are the eigenvectors of A wrt to eigenvalue λ . This space is called the eigen-space of A wrt to λ .

(2) Eigenvalue decomposition

For $A' = A \in \mathbb{R}^{n \times n}$, there are P and Λ such that $A = P\Lambda P'$ called the EVD of A. Here $P \in \mathbb{R}^{n \times n}$ with $P' = P^{-1}$ so that P'P = I = PP', i.e., the columns and the rows of P are orthonormal. Such P is called an orthogonal matrix. Λ is a diagonal matrix. From $A = P\Lambda P' \iff AP = P\Lambda \iff A(P_1, ..., P_n) = (P_1, ..., P_n)\Lambda \iff AP_i = \lambda_i P_i \forall i$ the diagonal elements of Λ are the eigenvalues of A, and columns of P are n orthonormal eigenvectors.

- (3) A is a LC of orthonormal matrices $A = P\Lambda P' = \sum_{i=1}^n \lambda_i P_i P'_i$ is a LC of matrices in $D = [P_1 P'_1, ..., P_n P'_n] \subset R^{n \times n}$. From $\langle P_i P'_i, P_j P'_j \rangle = \operatorname{tr}(P_j P'_j P_i P'_i) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$, D is an orthonormal basis for $\operatorname{Span}(D)$. Clearly $A \in \operatorname{Span}(D)$.
- (4) Compact form $\operatorname{rank}(A) = \operatorname{rank}(P\Lambda P') = \operatorname{rank}(\Lambda) = \# \text{ of non-zero eigenvalues.}$ With $\operatorname{rank}(A) = r, \ \Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix} \text{ where } \Lambda_r = \operatorname{diag}(\lambda_1, ..., \lambda_r), \ \lambda_i \neq 0, \ i = 1, ..., r.$ $A = (P_I, P_{II}) \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix} (P_I, P_{II})' = P_I \Lambda_r P_I' = \sum_{i=1}^r \lambda_i P_i P_i' \text{ is the compact form of the EVD where } P_I \in R^{n \times r} \text{ has orthonormal columns.}$

Ex1: Real symmetric matrix $A \in \mathbb{R}^{n \times n}$ has real eigenvalues and n orthogonal eigenvectors.

Ex2: A and B are similar if $A = XBX^{-1}$. Similar matrices share characteristic polynomial and hence share all eigenvalues. $|A - \lambda I| = |X(B - \lambda I)X^{-1}| = |X||B - \lambda I||X^{-1}| = |B - \lambda I|$. By EVD $A = P\Lambda P'$.

1

In EVD $A = P\Lambda P'$, A and Λ are similar.

- 2. Definite and semi-definite matrices
 - (1) Definitions and notations With $A' = A \in \mathbb{R}^{n \times n}$, x'Ax is a quadratic form of $x \in \mathbb{R}^n$.

$$A \text{ is } \left\{ \begin{array}{l} \text{positive definite denoted as } A > 0 \\ \text{non-negative definite denoted as } A \geq 0 \\ \text{negative definite denoted as } A < 0 \\ \text{non-positive definite denoted as } A \leq 0 \end{array} \right. \text{ if } x'Ax \left\{ \begin{array}{l} > 0 \\ \leq 0 \\ < 0 \end{array} \right. \text{ for all } 0 \neq x \in R^n$$

(2) A sufficient and necessary condition

Let $A = P\Lambda P'$ be the EVD for A where $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Then

$$A > 0 \iff \lambda_i > 0$$
 for all i ; $A > 0 \iff \lambda_i > 0$ for all i

$$A > 0 \Longleftrightarrow \lambda_i > 0$$
 for all i ; $A \ge 0 \Longleftrightarrow \lambda_i \ge 0$ for all i ; $A < 0 \Longleftrightarrow \lambda_i < 0$ for all i ; $A \le 0 \Longleftrightarrow \lambda_i \le 0$ for all i .

Proof. Only show the first one.

$$\Rightarrow : A > 0 \Longrightarrow 0 < P'_i A P_i = P'_i P \Lambda P' P_i = e'_i \Lambda e_i = \lambda_i \text{ for al } i.$$

$$\Leftarrow: 0 \neq x \in \mathbb{R}^n \Longrightarrow y = P'x \neq 0 \Longrightarrow x'Ax = y'\Lambda y = \sum_i \lambda_i y_i^2 > 0.$$
 So $A > 0$.

(3) $A^{1/2}$ and $A^{-1/2}$

For $A = P\Lambda P' \geq 0$, define $\Lambda^{1/2} = \text{diag}(\lambda_1^{1/2},...,\lambda_n^{1/2})$ and $A^{1/2} = P\Lambda^{1/2}P'$. Then $A^{1/2} \ge 0$ and $(A^{1/2})^2 = A$.

For $A = P\Lambda P' > 0$, define $\Lambda^{-1/2} = \operatorname{diag}(\lambda_1^{-1/2}, ..., \lambda_n^{-1/2})$ and $A^{-1/2} = P\Lambda^{-1/2}P'$. Then $A^{-1/2} > 0$ and $(A^{-1/2})^2 = A^{-1}$.

(4) Simple relations

$$A > 0 \Longleftrightarrow -A < 0; \ A \ge 0 \Longleftrightarrow -A \le 0; \ A < 0 \Longleftrightarrow -A > 0; \ A \le 0 \Longleftrightarrow -A \ge 0.$$

Proof.
$$A > 0 \iff x'Ax > 0$$
 for all $x \neq 0 \iff x'(-A)x < 0$ for all $x \neq 0 \iff -A < 0$.

3. Some properties

(1) Extended notations

$$A > B \iff A - B > 0 \iff B - A < 0 \iff B < A$$

 $A > B \iff A - B > 0 \iff B - A < 0 \iff B < A$

 $A \leq B$ and $B \leq C \Longrightarrow A \leq C$. (2) $A \leq A$;

Proof. Show the second one. For $0 \neq x \in \mathbb{R}^n$,

$$x'(A-C)x = x'[(A-B) + (B-C)]x = x'(A-B)x + x'(B-C)x \le 0$$
. So $A \le C$.

Comments: \leq is reflexive and transitive, and hence is a pre-order.

(3) $A_1 \leq B_1$ and $A_1 \leq B_2 \Longrightarrow \alpha A_1 + \beta B_1 \leq \alpha A_2 + \beta B_2$ for all $\alpha, \beta \geq 0$.

Proof. Skipped. Comment: \leq is preservable under LC with non-negative coefficients.

 $(4) A < B \Longrightarrow CAC' < CBC'.$

Proof. For $0 \neq x \in \mathbb{R}^n$, let y = C'x. Then x'(CAC' - CBC')x = y'(A - B)y < 0. So $CAC' - CBC' \le 0$, i.e., $CAC' \le CBC'$.

Comment: In (2), (3) and (4) \leq can be replaced by \geq .

Ex3: p64 1. $A' = A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ with rank(B) = n such that $(BB')^{-1}$ exists. $I_m \ge B'AB \iff (BB')^{-1} \ge A$.

$$\Rightarrow: I_m \ge B'AB \Longrightarrow [(BB')^{-1}B]I_m[(BB')^{-1}B]' \le [(BB')^{-1}B]B'AB[(BB')^{-1}B]'$$
$$\Longrightarrow (BB')^{-1} \ge A.$$

Notes: In p64 1, A > 0 is not needed. In p65 5, $\lambda_i > 0$ should be $\lambda_i \neq 0$.

L04 Singular value decomposition and generalized inverse

- 1. Singular value decomposition
 - (1) Singular value decomposition For $A \in R^{m \times n}$ with rank(A) = r, $A = (U_I, U_{II}) \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} (V_I, V_{II})' = U_I \Delta V'_{II}$ is the SVD where $U = (U_I, U_{II}) \in R^{m \times m}$ and $V = (V_I, V_{II}) \in R^{n \times n}$ are orthogonal $(U' = U^{-1})$ and $V' = V^{-1}$, $U_I \in R^{m \times r}$ and $V_I \in R^{n \times r}$ $(U'_I U_I = I_r = V'_I V_{II})$, $\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} \in R^{m \times n}$ with $\Delta = \operatorname{diag}(\delta_1, ..., \delta_r)$, $\delta_1 \geq \cdots \geq \delta_r > 0$.
 - (2) Singular values $0 \le AA' \in R^{m \times m}, \ 0 \le A'A \in R^{n \times n} \text{ and } A \text{ share ranks } r.$ The EVD $AA' = (U_I, U_{II}) \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} (U_I, U_{II})' = U_I \Delta^2 U_I' \text{ and}$ the EVD $A'A = (V_I, V_{II}) \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} (V_I, V_{II})' = V_I \Delta^2 V_I' \text{ share positive eigenvalues}$ $\delta_1^2 \ge \cdots \ge \delta_r^2 > 0 \text{ in } \Delta^2 = \operatorname{diag}(\delta_1^2, ..., \delta_r^2).$ $\delta_1 \ge \cdots \ge \delta_r > 0 \text{ are called the positive singular values of } A \text{ and } \Delta = \operatorname{diag}(\delta_1, ..., \delta_r) \text{ can be obtained by either EVD of } AA' \text{ or EVD of } A'A.$
 - (3) Construct SVD for A
 - (i) Method I By EVD for AA', $AA' = (U_I U_{II}) \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} (U_I, U_{II})'$. Let $V_I = A'U_I \Delta^{-1}$. Then $V'_I V_I = I_r$ and $A = U_I \Delta V'_I$.
 - (ii) Method II By EVD for A'A, $A'A=(V_I,\,V_{II})\begin{pmatrix}\Delta^2&0\\0&0\end{pmatrix}(V_I\,V_{II})'$. Let $U_I=AV_I\Delta^{-1}$. Then $U_I'U_I=I_r$ and $A=U_I\Delta V_I'$.
 - (iii) Comments In SVD Δ is unique. But U_I and V_I are not unique. Specifically V_I in (i) may not be V_I in (ii), and U_I in (ii) may not be U_I in (i)
 - (4) A LC of orthonormal matrices By SVD $A = U_I \Delta V_I' = \sum_{i=1}^r \delta_i U_i V_i'$ is a LC of $U_1 V_1', \dots U_r V_r'$, a set of r orthonormal matrices since $\langle U_i V_i', U_j V_j' \rangle = \operatorname{tr}(V_j U_j' U_i V_i) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
- 2. Generalized inverse
 - (1) Generalized inverse A^- and Moore-Penrose inverse A^+ For $A \in R^{m \times n}$ the conditions on $G \in R^{n \times m}$

(i):
$$AGA = A$$
, (ii): $GAG = G$, (iii): $(AG)' = AG$, (iv): $(GA)' = GA$

are Penrose conditions. Matrix G satisfying (i) is called a generalized inverse of A denoted by A^- . Matrix G satisfying all four conditions is Moore-Penrose inverse of A denoted by A^+ .

3

(2) Generalized inverses
$$A^-$$

Let
$$A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V'$$
 be the SVD for A . Then

$$A^{-} = \left\{ V \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U' : H_{12}, H_{21}, H_{22} \right\}.$$

Proof.
$$\subset$$
: $G \in A^- \Longrightarrow AGA = A$. Let $V'GU = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$. Then $ABA = A$ implies

that
$$\Delta H_{11}\Delta = \Delta$$
. Hence $H_{11} = \Delta^{-1}$. Thus $G = V \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U'$.

$$\supset$$
: With $G = V \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U'$, direct computation shows $AGA = A$. So $G \in A^-$.

(3) Moore-Penrose inverse A^+

With the SVD form for
$$A, A^+ = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U'$$
.

Proof.
$$AGA = A \iff G = V \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U'$$
. Now $GAG = G, (AG)' = AG, (GA)' = GA \iff H_{12} = 0, H_{21} = 0, H_{22} = 0 \iff G = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U.$

- (3) Comment: $A^+ \in A^-$.
- 3. Some Moore-Penrose inverses

(1)
$$0_{m\times n}^+ = 0_{n\times m}$$
, $(A')^+ = (A^+)'$ For $0 \neq x \in \mathbb{R}^n$, $x^+ = \frac{x'}{x'x}$ and $(x')^+ = \frac{x}{x'x}$.

Ex1:
$$(AB)^+ \neq B^+A^+$$
 example

$$\left[(1,0) \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right]^{+} = 1^{+} = 1. \text{ But } \left(\frac{1}{2} \right)^{+} (1,0)^{+} = \frac{(1,2)}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{5} \neq 1.$$

(2)
$$(A'A)^+ = A^+(A')^+$$
 and $(AA')^+ = (A')^+A^+$

Proof. For
$$(A'A)^{+} = A^{+}(A')^{+}$$
 check (iv).

$$A^{+}(A')^{+}A'A = A^{+}(A^{+})'A'A = A^{+}(AA^{+})'A = A^{+}AA^{+}A = A^{+}A$$
 is symmetric.

(3) Simplification:
$$(A'A)^+A' = A^+$$
 and $A'(AA')^+ = A^+$

Proof. Only show the first one.

$$(A'A)^{+}A' = A^{+}(A')^{+}A' = A^{+}(A^{+})'A' = A^{+}(AA^{+})' = A^{+}AA^{+} = A^{+}.$$

Ex2:
$$A(A'A)^+A' = AA^+$$
 and $A'(AA')^+A = A^+A$.

(4)
$$(A'A)^-$$
, $(AA')^-$, $(A'A)^-A'$ and $A'(AA')^-$ exist but may not be unique.

But
$$A(A'A)^{-}A' = AA^{+}$$
 and $A'(AA')^{-}A = A^{+}A$.

Proof Show the first one only

$$A(A'A)^{-}A' = AA^{+}A(A'A)^{-}(AA^{+}A)' = (AA^{+})'A(A'A)^{-}A'(AA^{+})'$$

$$= (A')^{+}(A'A)(A'A)^{-}(A'A)A^{+} = (A')^{+}(A'A)A^{+} = (A^{+})'A'AA^{+}$$

$$= (AA^{+})'AA^{+} = AA^{+}AA^{+} = AA^{+}$$