
L01: Real matrices

1. Matrices and their operations
In this course we only consider real matrices.

(1) Rm×n is a linear space
Matrix addition, scalar multiplication, a set of rules;
Linear combination α1A+ α2B + · · ·+ αkD
Zero matrix can always be written as a LC of other matrices

(2) Matrix multiplication
Condition for AB
Condition for AB where A and B are matrices with blocks
Interpretation of Ax
Interpretation of AB
Identity matrices. Left-inverse of A; right-inverse of A; inverse of A.
Non-singular matrix. Show B = A−1.

(3) Trace of a square matrix
Show tr(AB) = tr(BA)
Symmetric matrices

(4) Frobenius inner product
Inner product, induced norm, distance, angle, Pythagorean Theorem
Frobenius inner product
Matrix with orthogonal column, matrix with othonormal columns, orthogonal matrices

Ex1: For A, B, C in Rn×n, show (I +ABC)−1 = I −A(B−1 + CA)−1C.
Proof (I +ABC)[I −A(B−1 + CA)−1C]

= I −A(B−1 + CA)−1C +ABC −ABCA(B−1 + CA)−1C
= I −AB[B−1(B−1 + CA)−1C − C + CA(B−1 + CA)−1C]
= I −AB[B−1(B−1 + CA)−1 − I + CA(B−1 + CA)−1]C
= I −AB[(B−1 + CA)(B−1 + CA)−1 − I]C = I − 0 = I.

2. Terminology and notation

(1) For statements A and B the followings are the same
(a) If A is true, then B is true (b) A =⇒ B (c) B ⇐= A
(d) A is a sufficient condition for B
(e) B is a necessary condition for A

(2) For statements A and B the followings are the same
(a) A is defined by B (b) B is defined by A
(c) A is true if and only if B is true (d) B is true if and only if A is true
(e) A is false if and only if B is false (f) B is false if and only if A is false
(g) A ⇐⇒ B (h) A and B are equivalent
(i) A is a sufficient and necessary condition for B
(j) B is a sufficient and necessary condition for A

(3) For sets A and B the followings are equivalent
(a) A ⊂ B (b) B ⊃ A (c) x ∈ A ⇒ x ∈ B

(4) For sets A and B the followings are equivalent
(a) A = B (b) A ⊂ B and A ⊃ B
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Ex2: (i) tr(XA) = 0 for all X has a sufficient condition A = 0
Proof A = 0 =⇒ tr(XA) = tr(X0) = tr(0) = 0 for all X
(ii) tr(XA) = 0 for all X has necessary condition A = 0
Proof 0 = tr(XA) for all X =⇒ 0 = tr(A′A) = ∥A∥2 =⇒ A = 0
(iii) So tr(AX) = 0 for all X ⇐⇒ A = 0

Ex3 For A =

(
A1

0

)
∈ Rm×r where A1 ∈ Rr×r is non-singular, denote the left-inverse of A

by AL. Show AL = (A−1
1 , H) for all H ∈ Rr×m−r.

⊂: Suppose B = (B1, B2) ∈ AL. Then Ir = BA = B1A1 ⇒ B1 = A−1
1 .

So B = (A−1
1 , H) with H = B2

⊃: (A−1
1 , H)A = (A−1

1 , H)

(
A1

0

)
= Ir. So (A−1

1 , H) ⊂ AL.

3. Rank of matrices

(1) Independence
U1, .., Ur are vectors in a linear space

U1, .., Ur are linearly independent (LI)
def⇐⇒ “x1U1 + · · ·+ xrUr = 0 =⇒ xi = 0 for all i′′

U1, .., Ur are LD
def⇐⇒ x1U1 + · · ·+ xrUr = 0 for some x = (x1, ..., xr)

′ ̸= 0
⇐⇒ ∃Ui that is a LC of others

(2) Rank and dimension
Suppose D is a set in linear space V ,

rank(D) = r
def⇐⇒ ∃[x1, .., xr] ⊂ D; x1, ..., xr are LI; x is a LC of x1, ..., xr for all x ∈ D.

dim(V ) = r
def⇐⇒ ∃[x1, .., xr] ⊂ V ; x1, ..., xr are LI; x is a LC of x1, ..., xr for all x ∈ V.

[x1, ..., xr] is a basis of V .

(3) Matrix rank
The rank of n columns of A ∈ Rm×n is called the column rank of A
The rank of m rows of A ∈ Rm×n is called the row rank of A
The column rank and row rank of A are always equal and is called the rank of A denoted
as rank(A).

(4) For A ∈ Rm×n, rank(A) = rank(A′) ≤ min(m, n).

Ex5: A =

1 0 1 1
0 0 0 0
0 1 1 −1


rank(A) = 2 since A1 =

1
0
0

 and A2 =

0
0
1

 are LI; A3 = A1 + A2 and A4 =

A1 −A2.
Note that the first and the third rows are LI, and the second row is a LC of the first
and third row.

Ex6: rank(A) = rank

[(
A
0

)]
= rank

[(
A 0
0 0

)]
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L02 dimension of space and QR-decomposition

1. Dimension of space

(1) Subspace and span
V is a LS. S ⊂ V .

S is a subspace of V
⇐⇒ S is closed under addition and is closed under scalar multiplication
⇐⇒ S is closed under LC

For D ⊂ V , the collection of all LCs of vectors in D is closed under LCs and hence is a
subspace of V called the span of D denoted as Span(D). So

D ⊂ V =⇒ D ⊂ Span(D) ⊂ V.

(2) Dimension and rank
Suppose [x1, ..., xr] ⊂ D, x1, ..., xr are LI, and x is a LC of x1, ..., xr for all x ∈ D.
Then rank(D) = r. But one can see that [x1, ..., xr] is a basis of Span(D).
So dim[Span(D)] = r. Thus dim[Span(D)] = rank(D).

(3) Column space of matrix
For A ∈ Rm×n, {Ax : x ∈ Rn} contains all LCs of the columns of A and hence is the
span of the columns of A, a subspace of Rm called the column space of A with notations

C(A) = Span(A) = L(A) = {Ax ∈ Rm : x ∈ Rn}.

Clearly rank[L(A)] = rank(A).

Ex1: For two sets D1 and D2 in LS V , D1 ⊂ D2 =⇒ rank(D1) ≤ rank(D2)
For two spaces S1 and S2 in LS V , S1 ⊂ S2 =⇒ dim(S1) ≤ dim(S2).

Ex2: For matrices A, B and AB,
(i) y ∈ L(AB) =⇒ y = ABx = A(Bx) ∈ L(A). So L(AB) ⊂ L(A)
(ii) L(AB) ⊂ L(A) =⇒ dim[L(AB)] ⊂ L(A) =⇒ dim[L(AB)] ≤ dim[L(A)]

=⇒ rank(AB) ≤ rank(A).
.

(iii) rank(AB) = rank[(AB)′] = rank(B′A′) ≤ rank(B′) = rank(B)
So we conclude that the rank product is ≤ the rank of a factor.

2. Sum and intersection of subspaces

(1) Sum, intersection and their dimensions
S1 and S2 are two subspaces of V . Then S1 + S2 = {x + y : x ∈ S1 and y ∈ S2} and
S1 ∩ S2 are subspaces of V .

S1 ∩ S2 ⊂
{

S1

S2
⊂ S1 ∪ S2 ⊂ S1 + S2 ⊂ S

all but S1 ∪ S2 are LSs. It can be shown that

dim(S1 + S2) = dim(S1) + dim(S2)− dim(S1 ∩ S2).

(2) Direct sum
S1 + S2 is a direct sum denoted by S1 ⊕ S2 if S1 ∩ S2 = {0}.

dim(S1 ⊕ S2) = dim(S1) + dim(S2)
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(3) Orthogonal sum
S1 + S2 is an orthogonal sum denoted by S1⊕̇S2 if S1 ⊥ S2.
But S1 ⊥ S2 =⇒ S1 ∩ S2 = {0}. So an orthogonal sum is a direct sum.

Ex3: C[(A, B)] = C(A) + C(B).

⊂: z ∈ C[(A, B)] ⇒ z = (A, B)

(
x
y

)
= Ax+By ∈ C(A) + C(B)

⊃: z ∈ C(A) + C(B) ⇒ z = Ax+By = (A, B)

(
x
y

)
∈ C[(A, B)]

rank[(A, B)] = dim[C(A, B)] = dim[C(A) + C(B)]
= dim[C(A)] + dim[C(B)]− dim[C(A) ∩ C(B)]
= rank(A) + rank(B)− dim[C(A) ∩ C(B)] ≤ rank(A) + rank(B)

3. QR decomposition

(1) QR-decomposition
For A ∈ Rn×t with full column rank rank(A) = t there exist Q ∈ Rn×t with orthonormal
columns Q′Q = It and non-singular upper diagonal R ∈ Rt×t such that A = QR.

(2) Gram-Schmidt process
The essence of the QR-decomposition is the Gram-Schmidt process.
For given LI columns vectors A1, ..., At in A = (A1, ..., At), the process produces or-
thonormal Q1, ..., Qt such that Ai = r1iQ1 + · · ·+ riiQi, i = 1, ..., t.

With Q = (Q1, ..., Qt) and R =

r11 · · · r1t
...

. . .
...

0 · · · rtt

, A = QR.

(3) Additional requirement
The QR-decomposition is not unique. One can let the each of the diagonal elements of
R have designated signs.

Ex4: (a), (b) and (c) below are equivalent.
(a) A has a L-inverse (b) A has full column rank (c) rank(AB) = rank(B) ∀B

Proof. Suppose A ∈ Rn×r.

(a)=⇒(b): A has L-inverse AL. Then
r = rank(Ir) = rank(ALA) ≤ rank(A) ≤ r. So (b) rank(A) = r holds.

(a)⇐=(b): If (b), then by QR-decomposition, A = QR. Let B = R−1Q′.
Then BA = R−1Q′QR = Ir, i.e., A has a L-inverse. So (a) holds.

(a)=⇒(c): A has L-inverse AL. Then
rank(AB) ≤ rank(B) = rank(IrB) = rank(ALAB) ≤ rank(AB). So (c) holds.

(b)⇐=(c: rank(A) = rank(AIr) = rank(Ir) = r. So (b) holds. �.
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