L01: Real matrices

1. Matrices and their operations

In this course we only consider real matrices.

(1) $R^{m \times n}$ is a linear space

Matrix addition, scalar multiplication, a set of rules;

Linear combination $\alpha_1 A + \alpha_2 B + \cdots + \alpha_k D$

Zero matrix can always be written as a LC of other matrices

(2) Matrix multiplication

Condition for AB

Condition for AB where A and B are matrices with blocks

Interpretation of Ax

Interpretation of AB

Identity matrices. Left-inverse of A; right-inverse of A; inverse of A.

Non-singular matrix. Show $B = A^{-1}$.

(3) Trace of a square matrix

Show tr(AB) = tr(BA)

Symmetric matrices

(4) Frobenius inner product

Inner product, induced norm, distance, angle, Pythagorean Theorem

Frobenius inner product

Matrix with orthogonal column, matrix with othonormal columns, orthogonal matrices

Ex1: For
$$A, B, C$$
 in $R^{n \times n}$, show $(I + ABC)^{-1} = I - A(B^{-1} + CA)^{-1}C$.

Proof
$$(I + ABC)[I - A(B^{-1} + CA)^{-1}C]$$

$$= I - A(B^{-1} + CA)^{-1}C + ABC - ABCA(B^{-1} + CA)^{-1}C$$

$$= I - AB[B^{-1}(B^{-1} + CA)^{-1}C - C + CA(B^{-1} + CA)^{-1}C]$$

$$= I - AB[B^{-1}(B^{-1} + CA)^{-1} - I + CA(B^{-1} + CA)^{-1}]C$$

$$= I - AB[(B^{-1} + CA)(B^{-1} + CA)^{-1} - I]C = I - 0 = I.$$

- 2. Terminology and notation
 - (1) For statements A and B the followings are the same
 - (a) If A is true, then B is true
- (b) $A \Longrightarrow B$
- (c) $B \Longleftarrow A$

- (d) A is a sufficient condition for B
- (e) B is a necessary condition for A
- (2) For statements A and B the followings are the same
 - (a) A is defined by B

- (b) B is defined by A
- (c) A is true if and only if B is true
- (d) B is true if and only if A is true
- (e) A is false if and only if B is false
- (f) B is false if and only if A is false

(g) $A \iff B$

- (h) A and B are equivalent
- (i) A is a sufficient and necessary condition for B
- (i) B is a sufficient and necessary condition for A
- (3) For sets A and B the followings are equivalent
 - (a) $A \subset B$
- (b) $B \supset A$
- (c) $x \in A \Rightarrow x \in B$
- (4) For sets A and B the followings are equivalent
 - (a) A = B

(b) $A \subset B$ and $A \supset B$

Ex2: (i)
$$tr(XA) = 0$$
 for all X has a sufficient condition $A = 0$

Proof
$$A = 0 \Longrightarrow \operatorname{tr}(XA) = \operatorname{tr}(X0) = \operatorname{tr}(0) = 0$$
 for all X

(ii)
$$tr(XA) = 0$$
 for all X has necessary condition $A = 0$

Proof
$$0 = \operatorname{tr}(XA)$$
 for all $X \Longrightarrow 0 = \operatorname{tr}(A'A) = ||A||^2 \Longrightarrow A = 0$

(iii) So
$$tr(AX) = 0$$
 for all $X \iff A = 0$

Ex3 For
$$A = \begin{pmatrix} A_1 \\ 0 \end{pmatrix} \in R^{m \times r}$$
 where $A_1 \in R^{r \times r}$ is non-singular, denote the left-inverse of A by A^L . Show $A^L = (A_1^{-1}, H)$ for all $H \in R^{r \times m - r}$.

C: Suppose
$$B = (B_1, B_2) \in A^L$$
. Then $I_r = BA = B_1A_1 \Rightarrow B_1 = A_1^{-1}$. So $B = (A_1^{-1}, H)$ with $H = B_2$

$$\supset: (A_1^{-1}, H)A = (A_1^{-1}, H) {A_1 \choose 0} = I_r. \text{ So } (A_1^{-1}, H) \subset A^L.$$

3. Rank of matrices

(1) Independence

 $U_1,...,U_r$ are vectors in a linear space

$$U_1,...,U_r$$
 are linearly independent (LI) $\stackrel{def}{\Longleftrightarrow}$ " $x_1U_1+\cdots+x_rU_r=0 \Longrightarrow x_i=0$ for all i'' $U_1,...,U_r$ are LD $\stackrel{def}{\Longleftrightarrow}$ $x_1U_1+\cdots+x_rU_r=0$ for some $x=(x_1,...,x_r)'\neq 0$ \Longrightarrow $\exists U_i$ that is a LC of others

(2) Rank and dimension

Suppose D is a set in linear space V,

$$\operatorname{rank}(D) = r \stackrel{\operatorname{def}}{\Longleftrightarrow} \exists [x_1,...,x_r] \subset D; \ x_1,...,x_r \text{ are LI; } x \text{ is a LC of } x_1,...,x_r \text{ for all } x \in D.$$

$$\dim(V) = r \stackrel{\operatorname{def}}{\Longleftrightarrow} \exists [x_1,...,x_r] \subset V; \ x_1,...,x_r \text{ are LI; } x \text{ is a LC of } x_1,...,x_r \text{ for all } x \in V.$$

$$[x_1,...,x_r] \text{ is a basis of } V.$$

(3) Matrix rank

The rank of n columns of $A \in \mathbb{R}^{m \times n}$ is called the column rank of A

The rank of m rows of $A \in \mathbb{R}^{m \times n}$ is called the row rank of A

The column rank and row rank of A are always equal and is called the rank of A denoted as rank(A).

(4) For
$$A \in \mathbb{R}^{m \times n}$$
, $\operatorname{rank}(A) = \operatorname{rank}(A') \le \min(m, n)$.

Ex5:
$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

$$rank(A) = 2$$
 since $A_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ are LI; $A_3 = A_1 + A_2$ and $A_4 = A_1 + A_2$

$$A_1 - A_2$$
.

Note that the first and the third rows are LI, and the second row is a LC of the first and third row.

Ex6:
$$\operatorname{rank}(A) = \operatorname{rank} \left[\begin{pmatrix} A \\ 0 \end{pmatrix} \right] = \operatorname{rank} \left[\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \right]$$

L02 dimension of space and QR-decomposition

1. Dimension of space

(1) Subspace and span

V is a LS. $S \subset V$.

S is a subspace of V

 \iff S is closed under addition and is closed under scalar multiplication

 \iff S is closed under LC

For $D \subset V$, the collection of all LCs of vectors in D is closed under LCs and hence is a subspace of V called the span of D denoted as $\mathrm{Span}(D)$. So

$$D \subset V \Longrightarrow D \subset \operatorname{Span}(D) \subset V$$
.

(2) Dimension and rank

Suppose $[x_1,...,x_r] \subset D$, $x_1,...,x_r$ are LI, and x is a LC of $x_1,...,x_r$ for all $x \in D$. Then rank(D) = r. But one can see that $[x_1,...,x_r]$ is a basis of Span(D).

So $\dim[\operatorname{Span}(D)] = r$. Thus $\dim[\operatorname{Span}(D)] = \operatorname{rank}(D)$.

(3) Column space of matrix

For $A \in \mathbb{R}^{m \times n}$, $\{Ax : x \in \mathbb{R}^n\}$ contains all LCs of the columns of A and hence is the span of the columns of A, a subspace of \mathbb{R}^m called the column space of A with notations

$$C(A) = \text{Span}(A) = L(A) = \{Ax \in \mathbb{R}^m : x \in \mathbb{R}^n\}.$$

Clearly rank[L(A)] = rank(A).

Ex1: For two sets D_1 and D_2 in LS V, $D_1 \subset D_2 \Longrightarrow \operatorname{rank}(D_1) \le \operatorname{rank}(D_2)$

For two spaces S_1 and S_2 in LS V, $S_1 \subset S_2 \Longrightarrow \dim(S_1) \leq \dim(S_2)$.

Ex2: For matrices A, B and AB,

(i) $y \in L(AB) \Longrightarrow y = ABx = A(Bx) \in L(A)$. So $L(AB) \subset L(A)$

(ii) $L(AB) \subset L(A) \implies \dim[L(AB)] \subset L(A) \implies \dim[L(AB)] \le \dim[L(A)]$ $\implies \operatorname{rank}(AB) \le \operatorname{rank}(A).$

(iii) $\operatorname{rank}(AB) = \operatorname{rank}[(AB)'] = \operatorname{rank}(B'A') \le \operatorname{rank}(B') = \operatorname{rank}(B)$

So we conclude that the rank product is < the rank of a factor.

2. Sum and intersection of subspaces

(1) Sum, intersection and their dimensions

 S_1 and S_2 are two subspaces of V. Then $S_1 + S_2 = \{x + y : x \in S_1 \text{ and } y \in S_2\}$ and $S_1 \cap S_2$ are subspaces of V.

$$S_1 \cap S_2 \subset \left\{ \begin{array}{l} S_1 \\ S_2 \end{array} \subset S_1 \cup S_2 \subset S_1 + S_2 \subset S_1 \right.$$

all but $S_1 \cup S_2$ are LSs. It can be shown that

$$\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2).$$

(2) Direct sum

 $S_1 + S_2$ is a direct sum denoted by $S_1 \oplus S_2$ if $S_1 \cap S_2 = \{0\}$.

$$\dim(S_1 \oplus S_2) = \dim(S_1) + \dim(S_2)$$

(3) Orthogonal sum

 $S_1 + S_2$ is an orthogonal sum denoted by $S_1 \oplus S_2$ if $S_1 \perp S_2$. But $S_1 \perp S_2 \Longrightarrow S_1 \cap S_2 = \{0\}$. So an orthogonal sum is a direct sum.

Ex3:
$$C[(A, B)] = C(A) + C(B)$$
.

$$\subset : z \in C[(A, B)] \Rightarrow z = (A, B) \begin{pmatrix} x \\ y \end{pmatrix} = Ax + By \in C(A) + C(B)$$

$$\supset: z \in C(A) + C(B) \Rightarrow z = Ax + By = (A, B) {x \choose y} \in C[(A, B)]$$

$$rank[(A, B)] = dim[C(A, B)] = dim[C(A) + C(B)]$$

$$= dim[C(A)] + dim[C(B)] - dim[C(A) \cap C(B)]$$

$$= rank(A) + rank(B) - dim[C(A) \cap C(B)] < rank(A) + rank(B)$$

3. QR decomposition

(1) QR-decomposition

For $A \in \mathbb{R}^{n \times t}$ with full column rank rank(A) = t there exist $Q \in \mathbb{R}^{n \times t}$ with orthonormal columns $Q'Q = I_t$ and non-singular upper diagonal $R \in \mathbb{R}^{t \times t}$ such that A = QR.

(2) Gram-Schmidt process

The essence of the QR-decomposition is the Gram-Schmidt process.

For given LI columns vectors $A_1, ..., A_t$ in $A = (A_1, ..., A_t)$, the process produces orthonormal $Q_1, ..., Q_t$ such that $A_i = r_{1i}Q_1 + \cdots + r_{ii}Q_i$, i = 1, ..., t.

With
$$Q = (Q_1, ..., Q_t)$$
 and $R = \begin{pmatrix} r_{11} & \cdots & r_{1t} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{tt} \end{pmatrix}$, $A = QR$.

(3) Additional requirement

The QR-decomposition is not unique. One can let the each of the diagonal elements of R have designated signs.

- **Ex4:** (a), (b) and (c) below are equivalent.
 - (a) A has a L-inverse (b) A has full column rank (c) $\operatorname{rank}(AB) = \operatorname{rank}(B) \forall B$

Proof. Suppose $A \in \mathbb{R}^{n \times r}$.

- (a) \Longrightarrow (b): A has L-inverse A^L . Then $r = \operatorname{rank}(I_r) = \operatorname{rank}(A^L A) < \operatorname{rank}(A) < r$. So (b) $\operatorname{rank}(A) = r$ holds.
- (a) \Leftarrow (b): If (b), then by QR-decomposition, A = QR. Let $B = R^{-1}Q'$. Then $BA = R^{-1}Q'QR = I_r$, i.e., A has a L-inverse. So (a) holds.
- (a) \Longrightarrow (c): A has L-inverse A^L . Then $\operatorname{rank}(AB) \leq \operatorname{rank}(B) = \operatorname{rank}(I_rB) = \operatorname{rank}(A^LAB) \leq \operatorname{rank}(AB)$. So (c) holds.
- (b) \leftarrow (c: rank(A) = rank(AI_r) = rank(I_r) = r. So (b) holds. \Box .