Stat871

HW10

- 1. $X_1, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$. Re-parameterize $\theta = \sigma^2$ and $\tau = \frac{\mu}{\sigma^2}$.
 - (1) Write $f(x_1, ..., x_n; \theta, \tau)$ as $\exp[p(\theta, \tau) + q(x_1, ..., x_n) + r(\theta)T(x_1, ..., x_n) + \tau S(x_1, ..., x_n)]$. Identify $p(\theta, \tau), q(x_1, ..., x_n), r(\theta), T(x_1, ..., x_n)$ and $S(x_1, ..., x_n)$.

$$f(x_1, ..., x_n; \theta, \tau) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[\frac{\sum_i (x_i - \mu)^2}{-2\sigma^2}\right] \\ = \exp\left[-\frac{n}{2}\ln(2\pi\sigma^2) - \frac{\sum_i x_i^2}{2\sigma^2} - \frac{n\mu^2}{2\sigma^2} + \frac{\mu\sum_i x_i}{\sigma^2}\right] \\ = \exp\left[-\frac{n}{2}\ln(2\pi\theta) - \frac{n}{2}\theta\tau^2 + \frac{1}{-2\theta}\sum_i x_i^2 + \tau\sum_i x_i\right] \\ = \exp\left[p(\theta, \tau) + q(x_1, ..., x_n) + r(\theta)T(x_1, ..., x_n) + \tau S(x_1, ..., x_n)\right] \\ \text{where} \quad p(\theta, \tau) = -\frac{n}{2}\ln(2\pi\theta) - \frac{n}{2}\theta\tau^2, \quad q(x_1, ..., x_n) = 0 \\ r(\theta) = \frac{1}{-2\theta}, \quad T(x_1, ..., x_n) = \sum_{i=1}^n x_i^2 \text{ and } S(x_1, ..., x_n) = \sum_{i=1}^n x_i.$$

(2) Identify a sufficient statistic for θ and a sufficient statistic for τ .

By factorization theorem, $T(X_1, ..., X_n)$ is sufficient for θ , and $S(X_1, ..., X_n)$ is sufficient for τ .

(3) Show that with respect to θ , the likelihood function has monotone ratio in $T(X_1, ..., X_n)$.

 $\begin{array}{l} \theta_1 < \theta_2 \Longrightarrow \Lambda = \frac{f(x_1,..,x_n;\theta_2,\tau)}{f(x_1,..,x_n;\theta_1,\tau)} = e^{[p(\theta_2,\tau) - p(\theta_1,\tau)]} \cdot e^{[r(\theta_2) - r(\theta_1)]T(x_1,..,x_n)} \\ \text{With increasing function of } r(\theta) = \frac{1}{-2\theta} \text{ on } \theta \in (0,\infty), \text{ the ratio } \Lambda \text{ is an increasing function of } T(x_1,...,x_n). \end{array}$

2. For conditional α -level UMP test on H_0 : $\theta \leq \theta_0$ versus H_a : $\theta > \theta_0$ with θ in 1, the conditional pdf of T given S, $f_{T|S}(\cdot) = \frac{f_{(T,S)}(t,s;\theta,\tau)}{\int_t f_{(T,S)}(t,s;\theta,\tau) dt}$ is needed. Express $f_{(T,S)}(t,s;\theta,\tau)$ via $f_{N(\mu,\sigma^2/n)}(\cdot)$, the pdf of $N\left(\mu,\frac{\sigma^2}{n}\right)$, and $f_{\chi^2(n-1)}(\cdot)$, the pdf of $\chi^2(n-1)$. Hint: $\overline{X} = \frac{\sum X_i}{n} \sim N(\mu,\sigma^2/n)$ and $\frac{\sum_i X_i^2 - n\overline{X}^2}{\sigma^2} \sim \chi^2(n-1)$ are independent.

 $M = \overline{X} = \frac{S}{n} \sim N(\mu, \sigma^2/n) = N(\theta\tau, \tau/n)$ and $V = \frac{\sum x_i^2 - \frac{1}{n}(\sum x_i)^2}{\sigma^2} = \frac{T - \frac{1}{n}S^2}{\theta} \sim \chi^2(n-1)$ are independent. So the joint pdf for (M, V) is

$$f_{(M,V)}(m, v; \theta, \tau) = f_{N(\theta\tau, \theta/n)}(m) \cdot f_{\chi^2(n-1)}(v).$$

But $\operatorname{abs} \left| \frac{\partial(m,v)}{\partial(t,s)} \right| = \operatorname{abs} \left| \frac{m'_t}{v'_t} \frac{m'_s}{v'_s} \right| = \operatorname{abs} \left| \frac{0}{\frac{1}{\sigma^2}} \frac{1}{\frac{2s}{n\sigma^2}} \right| = \frac{1}{n\sigma^2} = \frac{1}{n\theta}$. Thus the joint pdf for (T, S) is

$$f_{(T,S)}(t,s;\theta,\tau) = f_{(N(\theta\tau,\theta/n)}\left(\frac{s}{n}\right) \cdot f_{\chi^2(n-1)}\left([t-\frac{s^2}{n}]/\theta\right) \cdot \frac{1}{n\theta}$$