Stat871

HW08

- 1. Let $X_1, ..., X_n$ be a random sample from Poisson(λ).
 - (1) Find T(X) such that the joint pmf of sample is $\exp[p(\lambda) + q(X) + \eta(\lambda)T(X)]$ where $\eta = \eta(\lambda)$ is a 1-1 mapping.

The joint pmf of a random sample $X_1, ..., X_n$ from Poisson (λ) is

$$f(x;\lambda) = \prod_{i} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum x_i}}{x_1! \cdots x_n!} e^{-n\lambda} = \exp\left[-n\lambda - \ln(x_1! \cdots x_n!) + (\ln\lambda) \sum X_i\right]$$

where $\eta = \ln \lambda$ is a 1-1 mapping. So $T(X) = \sum X_i$.

(2) Point out the distribution of T(X).

 $T(X) = \sum X_i \sim \text{Poisson}(n\lambda).$

(3) For $H_0: \lambda = \lambda_0$ versus $H_a: \lambda \neq \lambda_0$ find a general form of α -level unbiased UMP test.

$$\phi(T) = \begin{cases} 1 & T < c_1 \text{ or } T > c_2 \\ r_1 & T = c_1 \\ r_2 & T = c_2 \\ 0 & c_1 < T < c_2 \end{cases}$$

with $E_{\lambda_0}[\phi(T)] = \alpha$ and $E_{\lambda_0}[T\phi(T)] = \alpha E_{\lambda_0}(T)$ is UMP α -level similar unbiased test.

- 2. Consider UMP in (3) of 1 with n = 10, $\lambda_0 = 0.1$ and $\alpha = 0.05$.
 - (1) By the first condition on $\phi(T)$, determine the value of c_1 and the range of c_2 .

With $T \sim \text{Poisson}(1)$, by Condition 1 $\alpha = E_{\lambda_0}[\phi(T)]$, i.e.,

$$0.05 = P(T < c_1) + P(T > c_2) + r_1 P(T = c_1) + r_2 P(T = c_2).$$

So $P(T < c_1) \le 0.05$. But P(T = 0) > 0.05. Thus $c_1 \le 0 \Longrightarrow c_1 = 0$. Now $P(T > c_2) \le 0.05$. But P(T > 2) > 0.05 and P(T > 3) < 0.05. Thus $c_2 \ge 3$.

(2) If $c_1 = 0$ and $c_2 = 4$, find r_1 and r_2 .

With $c_1 = 0$ and $c_2 = 4$, the first condition becomes, $0.05 = 0 + 0.00366 + r_1 P(\text{Poisson}(1) = 0) + r_2 P(\text{Poisson}(1) = 4)$, i.e.,

$$0.36788r_1 + 0.01533r_2 = 0.04634$$

The second equation $\alpha E_{0.1}(T) = E_{0.1}[T\phi(T)]$ becomes

$$0.05 = \sum_{k=5}^{\infty} kP(T=k) + 4r_2P(T=4) = 0.01898 + 0.06132r_2$$

So $r_1 = 0.10488$, $r_2 = 0.50587$.