Stat871 HW05

1. For H_0 : $\lambda = 0.4$ versus H_a : $\lambda = 0.8$ where λ is the mean of a Poisson population. With a sample of size 10 find most powerful test at level 0.05.

Use link on www.math.wichita.edu/~xhu/ to access a Poisson distribution calculator.

 $\Lambda = \frac{f(X_1, \dots, X_{10}; 0.8)}{f(X_1, \dots, X_{10}; 0.4)} = \frac{\frac{1}{X_1! \dots X_{10}!} (0.8)^{X_1 + \dots + X_{10}e^{-8}}}{\frac{1}{X_1! \dots X_{10}!} (0.4)^{X_1 + \dots + X_{10}e^{-4}}} = 2^{X_1 + \dots + X_{10}} e^{-4}$ is an increasing function of $T = X_1 + \dots + X_{10} \sim \text{Poisson}(10\lambda).$

Let $\phi(X) = \begin{cases} 1 & T > c \\ r & T = c \\ 0 & T < c \end{cases}$ with

$$\begin{array}{rcl} 0.05 &=& E_{0.4}[\phi(X)] = P_{0.4}(T > c) + r \cdot P_{0.4}(T = C) \\ &=& P(\text{Poisson}(4) > c) + r \cdot P(\text{Poisson}(4) = c) \\ &=& P(\text{Poisson}(4) > 8) + r \cdot P(\text{Poisson}(4) = 8) = 0.02136 + r \cdot 0.02977 \\ \text{So, } r &=& 0.96204 \end{array}$$

Thus
$$\phi(X) = \begin{cases} 1 & X_1 + \dots + X_{10} > 8\\ 0.96204 & X_1 + \dots + X_{10} = 8\\ 0 & X_1 + \dots + X_{10} < 8 \end{cases}$$
 is MP test at level 0.05.

2. For $H_0: \mu = 8$ versus $H_0: \mu = 4$ where μ is from a population $N(\mu, 10^2)$. With a sample of size 40 find the most powerful test at level 0.05.

$$\Lambda = \frac{f(X_1, ..., X_{40}; 4)}{f(X_1, ..., X_{40}; 8)} = \exp\left[\frac{8}{5}(6 - \overline{X}_{40})\right] \text{ is a decreasing function of } \overline{X}_{40} \sim N(\mu, 1.5811^2).$$
Let
$$\phi(X) = \begin{cases} 1 & \overline{X}_{40} \leq c \\ 1 & \overline{X}_{40} > c \end{cases} \text{ with}$$

$$0.05 = P_8(\overline{X}_{40} \leq c) = P(N(8, 1.5811^2) \leq c) = P(Z < \frac{c-8}{1.5811})$$

$$\implies \frac{c-8}{1.5811} = -1.645 \implies c = 5.3991.$$

- So $\phi(X) = \begin{cases} 1 & X_{40} \le 5.3991 \\ 0 & \overline{X}_{40} > 5.3991 \end{cases}$. is the most powerful test at level 0.05.
- 3. $\phi(X)$ is the most powerful test at level α for H_0 : $\theta = \theta_0$ versus H_a : $\theta = \theta_1$ by Neyman-Pearson lemma. Show that $\phi(X)$ is unbiased. Hint: Need to show $E_{\theta_0}[\phi(X)] \leq E_{\theta_1}[\phi(X)]$. Let $\psi(X) \equiv \alpha$.

We need to show $E_{\theta_0}[\phi(X)] \leq E_{\theta_1}[\phi(X)]$. Let $\psi(X) \equiv \alpha$. Then $E_{\theta}[\psi(X)] = \alpha$ for all $\theta = \theta_0, \theta_1$. $\psi(X)$ is α -level test, but $\phi(X)$ is MP α -level test. So $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$. But $E_{\theta_1}[\psi(X)] = \alpha = E_{\theta_0}[\phi(X)]$. So $E_{\theta_0}[\phi(X)] \leq E_{\theta_1}[\phi(X)]$.