Stat871 HW03

1. Suppose $E_{\theta}(\widehat{\theta}_n) = \theta$ and $Cov_{\theta}(\sqrt{n} \ \widehat{\theta}_n) \longrightarrow I^{-1}(\theta)$. Show that $\widehat{\theta}_n$ is an asymptotically efficient estimator for θ .

By the definition of asymptotically efficient estimators, we need to show $\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$.

By Chebyshev inequality and $E_{\theta}(\widehat{\theta}_n) = \theta$,

$$\begin{aligned} \forall \, \epsilon > 0, \ P(\|\widehat{\theta}_n - \theta\| > \epsilon) &= P(\|\widehat{\theta}_n - \theta\|^2 > \epsilon^2) \le \frac{E_{\theta}(\|\widehat{\theta}_n - \theta\|^2)}{\epsilon^2} \\ &= \frac{E_{\theta}\{\operatorname{tr}[(\widehat{\theta}_n - \theta)'(\widehat{\theta}_n - \theta)]\}}{\epsilon^2} = \frac{E_{\theta}\{\operatorname{tr}[(\widehat{\theta}_n - \theta)(\widehat{\theta}_n - \theta)']\}}{\epsilon^2} \\ &= \frac{\operatorname{tr}\{E_{\theta}[(\widehat{\theta}_n - \theta)(\widehat{\theta}_n - \theta)']\}}{\epsilon^2} = \frac{\operatorname{tr}[\operatorname{Cov}_{\theta}(\widehat{\theta}_n)]}{\epsilon^2} \\ &= \frac{\operatorname{tr}[n \cdot \operatorname{Cov}_{\theta}(\widehat{\theta}_n)]}{n\epsilon^2} = \frac{\operatorname{tr}[\operatorname{Cov}_{\theta}(\sqrt{n} \ \widehat{\theta}_n)]}{n\epsilon^2}. \end{aligned}$$

But $\operatorname{tr}[\operatorname{Cov}_{\theta}(\sqrt{n}\ \widehat{\theta}_n)] \longrightarrow \operatorname{tr}[I^{-1}(\theta)]$ and $n\epsilon^2 \longrightarrow \infty$. So $\frac{\operatorname{tr}[\operatorname{Cov}_{\theta}(\sqrt{n}\ \widehat{\theta}_n)]}{n\epsilon^2} \longrightarrow 0$.

Thus $\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$ holds. Therefore $\widehat{\theta}_n$ is asymptotically efficient for θ .

- 2. $X_n = \begin{cases} 0 & p = 1 \frac{1}{n} \\ n & p = \frac{1}{n} \end{cases}$ and $X \equiv 0$. Then X has cdf $F(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$ and E(X) = 0.
 - (1) Find cdf $F_n(x)$ for X_n .

Cdf for
$$X_n$$
 is $F_n(x) = \begin{cases} 0 & x < 0 \\ 1 - \frac{1}{n} & x \in [0, n) \\ 1 & x \ge n \end{cases}$.

(2) Show that $X_n \stackrel{d}{\longrightarrow} X$.

When x < 0, $F_n(x) = 0 \longrightarrow 0 =$

When x < 0, $F_n(x) = 0 \longrightarrow 0 = F(x)$. When x > 0, $F_n(x) = \begin{cases} 1 - \frac{1}{n} & x \in (0, n) \\ 1 & x \in [n \infty) \end{cases} \longrightarrow 1 = F(x)$.

Thus $F_n(x) \longrightarrow F(x)$ for all $x \neq 0$. Hence $X_n \stackrel{d}{\longrightarrow} X$.

(3) Show that $E(X_n) \not\to E(X)$.

$$E(X_n) = 0 \left(1 - \frac{1}{n}\right) + n \times \frac{1}{n} = 1$$
. But $E(X) = 0$. So $E(X_n) \not\to E(X)$.

1