Stat871

HW10

- 1. $X_1, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$. Re-parameterize $\theta = \sigma^2$ and $\tau = \frac{\mu}{\sigma^2}$.
 - (1) Write $f(x_1, ..., x_n; \theta, \tau)$ as $\exp[p(\theta, \tau) + q(x_1, ..., x_n) + r(\theta)T(x_1, ..., x_n) + \tau S(x_1, ..., x_n)]$. Identify $p(\theta, \tau), q(x_1, ..., x_n), r(\theta), T(x_1, ..., x_n)$ and $S(x_1, ..., x_n)$.
 - (2) Identify a sufficient statistic for θ and a sufficient statistic for τ .
 - (3) Show that with respect to θ , the likelihood function has monotone ratio in $T(X_1, ..., X_n)$.
- 2. For conditional α -level UMP test on H_0 : $\theta \leq \theta_0$ versus H_a : $\theta > \theta_0$ with θ in 1, the conditional pdf of T given S, $f_{T|S}(\cdot) = \frac{f_{(T,S)}(t,s;\theta,\tau)}{\int_t f_{(T,S)}(t,s;\theta,\tau) dt}$ is needed. Express $f_{(T,S)}(t,s;\theta,\tau)$ via $f_{N(\mu,\sigma^2/n)}(\cdot)$, the pdf of $N\left(\mu,\frac{\sigma^2}{n}\right)$ and $f_{\chi^2(n-1)}(\cdot)$, the pdf of $\chi^2(n-1)$. Hint: $\overline{X} = \frac{\sum X_i}{n} \sim N(\mu,\sigma^2/n)$ and $\frac{\sum_i X_i^2 - n\overline{X}^2}{\sigma^2} \sim \chi^2(n-1)$ are independent.