Stat871

HW02

- 1. $\begin{pmatrix} y \\ y_* \end{pmatrix} \sim \left(\begin{pmatrix} X \\ X_* \end{pmatrix} \mu, \begin{pmatrix} \Sigma & C \\ C' & V \end{pmatrix} \right).$ (1) Find expression for $\operatorname{Cov}(By - y_*).$ (2) Suppose $T = B + H(I - XX^+), D = (B\Sigma - C')(I - XX^+).$ Show that $\operatorname{Cov}(Ty - y_*) - \operatorname{Cov}(By - y_*) = HD' + DH' + H(I - XX^+)\Sigma(I - XX^+)H'.$
 - (3) Argue that if $(B\Sigma C')(I XX^+) = 0$, then $\operatorname{Cov}(Ty y_*) \operatorname{Cov}(By y_*) \ge 0$.
- 2. \overline{X}_n is the mean of a sample of size n, and μ is the population mean.
 - (1) Show that $\frac{n}{n+k}\overline{X}_n$ is an asymptotically unbiased estimator for μ .
 - (2) Show that $\frac{n}{n+k}\overline{X}_n$ is a consistent estimator for μ .