
L06 Extended definition of normal distributions

1. Extended definition of normal distributions

(1) Defintions
Random vector x ∈ Rp has normal distribution with mean µ and variance-covariance matrix Σ
denoted as x ∼ N(µ, Σ) if x = Az+ µ where z ∼ N(0, Ir) by its pdf and AA′ = Σ.
By the definition with z ∼ N(0, Ir) all Az+ µ are normal.

(2) Extended definition
Suppose x ∼ N(µ, Σ) by its pdf. Then Σ > 0. So Σ−1/2 exists. Let z = Σ−1/2(x − µ). Then

z ∼ N(0, I) and x = Σ1/2z+µ with Σ1/2
(
Σ1/2

)′
= Σ. Hence by the new definition, x ∼ N(µ, Σ).

(3) Support
The support of z ∼ N(0, Ir) is Rr, i.e., the values of z occupy whole Rr. Thus the support of
x = Az+µ is ARr+µ. Here ARr = L(A) is the column space of A. But L(A) = L(AA′) = L(Σ).
So x has support µ+ L(Σ).

Ex1: x =

(
X1

X2

)
∼ N

((
1
2

)
,

(
1 1
1 1

))
has support

(
1
2

)
+ L

[(
1 1
1 1

)]
=

(
1
2

)
+ L

[(
1
1

)]
.

Comment: When Σ ∈ Rp×p is singular, x does not have a pdf, and the support is not Rp.

(4) A transformation
x ∼ N(µ, Σ) =⇒ y = Bx+ b ∼ N(Bµ+ b, BΣB′).

Proof x ∼ N(µ, Σ) ⇐⇒ x = Az+ µ, z ∼ (0, Ir) and AA′ = Σ.
So y = Bx+ b = BAz+Bµ+ b with BA(BA)′ = BΣB′. Thus y ∼ N(Bµ+ b, BΣB′).

2. Probability and parameters

(1) Probability
x ∼ N(µ, Σ) and D ⊂ Rp. Find P (x ∈ D).
If Σ > 0, then pdf f(x) exists. So P (x ∈ D) =

∫∫
D f(x)dx1, .., dxp.

If Σ is singular, then Σ = AA′, A has full column rank r. So x = Az+ µ with z ∼ N(0, Ir).
Let Dr = {z ∈ Rr : Ax+ µ ∈ D}. Then

P (x ∈ D) = P (Az+ µ ∈ D) = P (z ∈ Dr) =

∫∫
Rr

fz(z)dz1, .., dzr.

Ex2: For x ∼ N

((
1
2

)
,

(
1 1
1 1

))
let D = {−1 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 10}. Find P (x ∈ D).

Σ =

(
1 1
1 1

)
=

(
1
1

)(
1
1

)′

. So x =

(
1
1

)
Z +

(
1
2

)
where Z ∼ (0, 12).

P (x ∈ D) = P

((
Z + 1
Z + 2

)
∈ D

)
= P (−1 ≤ Z + 1 ≤ 1, 0 ≤ Z + 2 ≤ 10) = P (−2 ≤ Z ≤ 0, −2 ≤ Z ≤ 8)
= P (−2 ≤ Z ≤ 0) = P (0 ≤ Z ≤ 2) = 0.4772.

(2) Parameters
x ∼ N(µ, Σ) =⇒ x ∼ (µ, Σ).
The above is true when Σ > 0.
When Σ is singular, x = Az+ µ and z ∼ N(0, I) =⇒ x = Az+ µ and z ∼ (0, I).
Thus E(x) = E(Az+ µ) = A0+ µ = µ and Cov(x) = Cov(Az+ µ) = AIA′ = Σ.

Comment: To have E(x), the joint pdf for x is not a necessary condition. It is only required to
have marginal pdfs for each components of x.
To have Cov(x), the joint pdf is not a necessary condition. It is only requred to have marginal

pdfs for all

(
Xi

Xj

)
.
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3. Extended definition for independence

(1) Extended definition for independence
x ∈ Rp and y ∈ Rq are independent if x = g1(u), y = g1(v) and u ∈ Rr1 and v ∈ Rr2 are
independent by f(uv) = f1(u) f2(v).
By this definition, if u and v are independent, then all functions of u are independent to all
functions of v.

(2) Extended definiton
If x and y are independent by the definition using the pdfs, then they are still independent by
the extended definition.

(3) Relation to uncorrelation
If x and y are independent, then x and y are uncorrelated.

Proof Xi = g1i(u) and Yj = g2j(v). So

E(XiYj) =
∫∫

Rr1+r2
g1i(u)g2j(v)f(u, v) du1, .., dur1dv1, .., dvr2

=
∫∫

Rr1
g1i(u)f1(u) du1, .., dur1

∫∫
Rr2

g2j(v)f2(v) dv1, .., dvr2
= E(Xi)E(Yj).

Thus cov(Xi, Yj) = E(XiYj)− E(Xi)E(Yj) = 0. Hence Cov(x, y) = 0.

(4) Suppose

(
x
y

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. Then

x and y are independent ⇐⇒ Σ12 = 0 ⇐⇒ Σ21 = 0.

Proof Only show⇐: When Σ12 = 0 and Σ21 = 0, Σ = Σ1/2
(
Σ1/2

)′
where Σ1/2 =

(
Σ

1/2
11 0

0 Σ
1/2
22

)
.

So

(
x
y

)
=

(
Σ

1/2
11 0

0 Σ
1/2
22

)(
z1
z2

)
+

(
µ1

µ2

)
where

(
z1
z2

)
∼ N

((
0
0

)
,

(
I 0
0 I

))
. So z1 and z2

are independent. But x = Σ
1/2
11 z1 + µ1 is a function of z1 and y = Σ

1/2
22 z2 + µ2 is a function

of z2. Hence x and y are independent.

Ex3: Random vector x ∈ Rp has distribution x ∼ N(µ, Σ). Let A ∈ Rm×p and B ∈ Rn×p.

Ax+ α and Bx+ β are independent ⇐⇒ AΣB′ = 0.

Proof

(
Ax+ α
Bx+ β

)
=

(
A
B

)
x+

(
α
β

)
∼ N

((
Aµ+ α
Bµ+ β

)
,

(
AΣA′ AΣB′

BΣA′ BΣB′

))
.

So Ax+ α and Bx+ β are independent if and only if AΣB′ = 0.
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