

L06 Extended definition of normal distributions

1. Extended definition of normal distributions

(1) Definitions

Random vector $\mathbf{x} \in R^p$ has normal distribution with mean μ and variance-covariance matrix Σ denoted as $\mathbf{x} \sim N(\mu, \Sigma)$ if $\mathbf{x} = A\mathbf{z} + \mu$ where $\mathbf{z} \sim N(0, I_r)$ by its pdf and $AA' = \Sigma$. By the definition with $\mathbf{z} \sim N(0, I_r)$ all $A\mathbf{z} + \mu$ are normal.

(2) Extended definition

Suppose $\mathbf{x} \sim N(\mu, \Sigma)$ by its pdf. Then $\Sigma > 0$. So $\Sigma^{-1/2}$ exists. Let $\mathbf{z} = \Sigma^{-1/2}(\mathbf{x} - \mu)$. Then $\mathbf{z} \sim N(0, I)$ and $\mathbf{x} = \Sigma^{1/2}\mathbf{z} + \mu$ with $\Sigma^{1/2}(\Sigma^{1/2})' = \Sigma$. Hence by the new definition, $\mathbf{x} \sim N(\mu, \Sigma)$.

(3) Support

The support of $\mathbf{z} \sim N(0, I_r)$ is R^r , i.e., the values of \mathbf{z} occupy whole R^r . Thus the support of $\mathbf{x} = A\mathbf{z} + \mu$ is $AR^r + \mu$. Here $AR^r = L(A)$ is the column space of A . But $L(A) = L(AA') = L(\Sigma)$. So \mathbf{x} has support $\mu + L(\Sigma)$.

Ex1: $\mathbf{x} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right)$ has support $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + L\left[\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right] = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + L\left[\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right]$.

Comment: When $\Sigma \in R^{p \times p}$ is singular, \mathbf{x} does not have a pdf, and the support is not R^p .

(4) A transformation

$\mathbf{x} \sim N(\mu, \Sigma) \implies \mathbf{y} = B\mathbf{x} + b \sim N(B\mu + b, B\Sigma B')$.

Proof $\mathbf{x} \sim N(\mu, \Sigma) \iff \mathbf{x} = A\mathbf{z} + \mu, \mathbf{z} \sim N(0, I_r)$ and $AA' = \Sigma$.

So $\mathbf{y} = B\mathbf{x} + b = BA\mathbf{z} + B\mu + b$ with $BA(BA)' = B\Sigma B'$. Thus $\mathbf{y} \sim N(B\mu + b, B\Sigma B')$.

2. Probability and parameters

(1) Probability

$\mathbf{x} \sim N(\mu, \Sigma)$ and $\mathcal{D} \subset R^p$. Find $P(\mathbf{x} \in \mathcal{D})$.

If $\Sigma > 0$, then pdf $f(\mathbf{x})$ exists. So $P(\mathbf{x} \in \mathcal{D}) = \iint_{\mathcal{D}} f(\mathbf{x}) dx_1, \dots, dx_p$.

If Σ is singular, then $\Sigma = AA'$, A has full column rank r . So $\mathbf{x} = A\mathbf{z} + \mu$ with $\mathbf{z} \sim N(0, I_r)$.

Let $\mathcal{D}_r = \{\mathbf{z} \in R^r : A\mathbf{z} + \mu \in \mathcal{D}\}$. Then

$$P(\mathbf{x} \in \mathcal{D}) = P(A\mathbf{z} + \mu \in \mathcal{D}) = P(\mathbf{z} \in \mathcal{D}_r) = \iint_{R^r} f_z(\mathbf{z}) dz_1, \dots, dz_r.$$

Ex2: For $\mathbf{x} \sim N\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right)$ let $\mathcal{D} = \{-1 \leq X_1 \leq 1, 0 \leq X_2 \leq 10\}$. Find $P(\mathbf{x} \in \mathcal{D})$.

$\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}'$. So $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} Z + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ where $Z \sim (0, 1^2)$.

$$\begin{aligned} P(\mathbf{x} \in \mathcal{D}) &= P\left(\begin{pmatrix} Z+1 \\ Z+2 \end{pmatrix} \in \mathcal{D}\right) \\ &= P(-1 \leq Z+1 \leq 1, 0 \leq Z+2 \leq 10) = P(-2 \leq Z \leq 0, -2 \leq Z \leq 8) \\ &= P(-2 \leq Z \leq 0) = P(0 \leq Z \leq 2) = 0.4772. \end{aligned}$$

(2) Parameters

$\mathbf{x} \sim N(\mu, \Sigma) \implies \mathbf{x} \sim (\mu, \Sigma)$.

The above is true when $\Sigma > 0$.

When Σ is singular, $\mathbf{x} = A\mathbf{z} + \mu$ and $\mathbf{z} \sim N(0, I)$ $\implies \mathbf{x} = A\mathbf{z} + \mu$ and $\mathbf{z} \sim (0, I)$.

Thus $E(\mathbf{x}) = E(A\mathbf{z} + \mu) = A\mathbf{0} + \mu = \mu$ and $\text{Cov}(\mathbf{x}) = \text{Cov}(A\mathbf{z} + \mu) = AIA' = \Sigma$.

Comment: To have $E(\mathbf{x})$, the joint pdf for \mathbf{x} is not a necessary condition. It is only required to have marginal pdfs for each components of \mathbf{x} .

To have $\text{Cov}(\mathbf{x})$, the joint pdf is not a necessary condition. It is only required to have marginal pdfs for all $\begin{pmatrix} X_i \\ X_j \end{pmatrix}$.

3. Extended definition for independence

(1) Extended definition for independence

$\mathbf{x} \in R^p$ and $\mathbf{y} \in R^q$ are independent if $\mathbf{x} = g_1(\mathbf{u})$, $\mathbf{y} = g_2(\mathbf{v})$ and $\mathbf{u} \in R^{r_1}$ and $\mathbf{v} \in R^{r_2}$ are independent by $f(\mathbf{u}, \mathbf{v}) = f_1(\mathbf{u}) f_2(\mathbf{v})$.

By this definition, if \mathbf{u} and \mathbf{v} are independent, then all functions of \mathbf{u} are independent to all functions of \mathbf{v} .

(2) Extended definiton

If \mathbf{x} and \mathbf{y} are independent by the definition using the pdfs, then they are still independent by the extended definition.

(3) Relation to uncorrelation

If \mathbf{x} and \mathbf{y} are independent, then \mathbf{x} and \mathbf{y} are uncorrelated.

Proof $X_i = g_{1i}(\mathbf{u})$ and $Y_j = g_{2j}(\mathbf{v})$. So

$$\begin{aligned} E(X_i Y_j) &= \iint_{R^{r_1+r_2}} g_{1i}(\mathbf{u}) g_{2j}(\mathbf{v}) f(\mathbf{u}, \mathbf{v}) du_1, \dots, du_{r_1} dv_1, \dots, dv_{r_2} \\ &= \iint_{R^{r_1}} g_{1i}(\mathbf{u}) f_1(\mathbf{u}) du_1, \dots, du_{r_1} \iint_{R^{r_2}} g_{2j}(\mathbf{v}) f_2(\mathbf{v}) dv_1, \dots, dv_{r_2} \\ &= E(X_i) E(Y_j). \end{aligned}$$

Thus $\text{cov}(X_i, Y_j) = E(X_i Y_j) - E(X_i) E(Y_j) = 0$. Hence $\text{Cov}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$.

(4) Suppose $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)$. Then

\mathbf{x} and \mathbf{y} are independent $\iff \Sigma_{12} = 0 \iff \Sigma_{21} = 0$.

Proof Only show \iff : When $\Sigma_{12} = 0$ and $\Sigma_{21} = 0$, $\Sigma = \Sigma^{1/2} (\Sigma^{1/2})'$ where $\Sigma^{1/2} = \begin{pmatrix} \Sigma_{11}^{1/2} & 0 \\ 0 & \Sigma_{22}^{1/2} \end{pmatrix}$.

So $\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \Sigma_{11}^{1/2} & 0 \\ 0 & \Sigma_{22}^{1/2} \end{pmatrix} \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ where $\begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \right)$. So \mathbf{z}_1 and \mathbf{z}_2

are independent. But $\mathbf{x} = \Sigma_{11}^{1/2} \mathbf{z}_1 + \mu_1$ is a function of \mathbf{z}_1 and $\mathbf{y} = \Sigma_{22}^{1/2} \mathbf{z}_2 + \mu_2$ is a function of \mathbf{z}_2 . Hence \mathbf{x} and \mathbf{y} are independent.

Ex3: Random vector $\mathbf{x} \in R^p$ has distribution $\mathbf{x} \sim N(\mu, \Sigma)$. Let $A \in R^{m \times p}$ and $B \in R^{n \times p}$.

$A\mathbf{x} + \alpha$ and $B\mathbf{x} + \beta$ are independent $\iff A\Sigma B' = 0$.

Proof $\begin{pmatrix} A\mathbf{x} + \alpha \\ B\mathbf{x} + \beta \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} \mathbf{x} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \sim N \left(\begin{pmatrix} A\mu + \alpha \\ B\mu + \beta \end{pmatrix}, \begin{pmatrix} A\Sigma A' & A\Sigma B' \\ B\Sigma A' & B\Sigma B' \end{pmatrix} \right)$.

So $A\mathbf{x} + \alpha$ and $B\mathbf{x} + \beta$ are independent if and only if $A\Sigma B' = 0$.