
L04: Population parameter

1. Population mean vector

(1) Population mean vector

The mean vector for population x =

X1

...
Xp

 is µ = E(x) =

E(X1)
...

E(Xp)

 =

µ1

...
µp

 where

µi = E(Xi) =

∫
R

xifi(xi)dxi =

∫∫
Rp

xif(x1, .., xp)dx1, ...dxp

is the average value of Xi. µ = E(x) is the average value of x. Since

µ exists ⇐⇒ µi exists for all i ⇐⇒ fi(xi) exists for all i ⇐= f(x1, .., xp) exists

there are cases where x does not have joint pdf but E(x) exists.

(2) Expectation of random matrix
For random matrix Z = (Zij)a×b, the expectation E(Z) = (E(Zij))a×b. To have E(Z) we have to

assume that the distributions of Zij are known for all i and j. If x =

X1

...
Xp

 has joint pdf f(x)

and Zij = gij(x), then E(Zij) =
∫∫

Rp gij(x) f(x)dx1, .., dxp.

(3) A formula for expectation
Let X, Y, U, V be random matrices. E(AXB + CY D + α) = A[E(X)]B + C[E(Y )]D + α.

Ex1: x =

X1

...
Xp

 has joint pdf f(x). Then E(xx′) = E[(XiXj)p×p] = (E(XiXj))p×p where

E(XiXj) =
∫∫

R2 xixjfij(xi, xj) dxidxj =
∫∫

Rp xixjf(x)dx1, ..., dxp.
E(xx′) exists if the marginal distributions for Xi and Xj are known for all (i, j).

2. Population variance-covariance matrix

(1) Population variance-covariance matrix

The variance-covariance matrix for population x =

X1

...
Xp

 is

Σ =

 var(X1) · · · cov(X1, Xp)
...

. . .
...

cov(Xp, X1) · · · var(Xp)

 =

σ11 · · · σ1p

...
. . .

...
σp1 · · · σpp

 =

 σ2
1 · · · σ1p

...
. . .

...
σp1 · · · σ2

p

 .

With σij = cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] = E(XiXj)− µiµj ,

Σ = E[(x− µ)(x− µ)′] = E(xx′]− µµ′.

We often write x ∼ (µ, Σ) to indicate E(x) = µ and Cov(X) = Σ.

(2) Covariance matrix
The covariance matrix for random vector x ∈ Rp and random vector y ∈ Rq is

Σxy =

cov(x1, y1) · · · cov(x1, yq)
...

. . .
...

cov(xp, y1) · · · cov(xp, yq)

 ∈ Rp×q.

1



With cov(Xi, Yj) = E[(Xi − µxi
)(Yj − µyj

)] = E(XiYj)− µxi
µyj

,

Cov(x, y) = E[(x− µx)(y − µy)
′] = E(xy′)− µxµ

′
y.

Clearly Cov(x) = Cov(x, x) and Cov(y, x) = [Cov(x, y)]′.

(3) A formula for covariance matrix
Let x, y, u and v be random vectors. Then

Cov(Ax+By + α, Cu+Dv + β)

= A cov(x, u)C ′ +ACov(x, v)D′ +B Cov(y, u)C ′ +B Cov(y, v)D′

Ex2:

(
x
y

)
∼ (µ, Σ) where µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Let z = A

(
x
y

)
with

A =

(
I 0

−Σ21Σ
−1
11 I

)
. Then z ∼

((
µ1

µ2 − Σ21Σ
−1
11 µ1

)
,

(
Σ11 0
0 Σ22.1

))
.

3. Population correlation matrix

(1) Population correlation matrix

Let Σ be the variance-covariance matrix for the population x =

X1

...
Xp

.

Then ∆2 = diag(Σ) = diag(σ2
1 , ..., σ

2
p) is the population variance matrix and

∆ = diag(σ1, ..., σp) is the population standard deviation matrix.

ρ = ∆−1Σ∆−1 =


σ2
1

σ1 σ1
· · · σ1p

σ1 σp

...
. . .

...
σp1

σp σ1
· · · σp2

σp σp

 =

 1 · · · ρ1p
...

. . .
...

ρp1 · · · 1


is the population correlation matrix.

(2) Properties
−1 ≤ ρij =

σij

σi σj
≤ 1

ρij = 1 ⇐⇒ Xi = aXj + b with a > 0 and ρij = −1 ⇐⇒ Xi = aXj + b with a < 0.

4. Parameters for conditional distributions

(1) Conditional mean vector
Conditional pdf of y ∈ Rq given x ∈ Rp is f(y|x). Then the conditional mean of y given x

E(y|x) =

E(y1|x)
...

E(yq|x)

 is vector valued function of x

where E(yj |x) =
∫
R
yjf(y|x)dy1, .., dyq is a function of x.

(2) Conditional variance-covariance matrix
The conditional variance-covariance matrix of y given x

Cov(y|x) = E{[y − E(y|x)][y − E(y|x)]′|x} = E(yy′|x)− [E(y|x)][E(y|x)]′

is a matrix-valued function of x.
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L05: Normal distributions

1. Parameters of conditional distributions

(1) Expectation of conditional expectations
x ∈ Rp, y ∈ Rq and Z = (gij(y))a×b. Conditional expectation E(Z|x) = (E(gij(y)|x)a×b is a
matrix-valued function of x. Then E[E(Z|x)] = E(Z).

Proof We show E[E(gij(y)|x)] = E(gij(y)) = E(Zij).

E [E (gij(y)|x)] =
∫∫

Rp E (gij(y) | x) fx(x) dx1, .., dxp

=
∫∫

Rp

[∫∫
Rq gij(y) f(y|x)dy1, .., dyq

]
fX(x) dx1, .., dxp

=
∫∫

Rp+q gij(y) f(x, y)dx1, .., dxpdy1, .., dyq = E(gij(y) = E(Zij).

(2) Cov(y) = E[Cov(y | x)] + Cov(E(y | x)).
Proof Note that

E[Cov(y | x)] = E {E (yy′ | x)− [E(y | x)][E(y | x)]′}

= E(yy′)− E{[E(y | x)][E(y | x)]′}.

Cov[E(y | x)] = E{[E(y | x)][E(y | x)]′} − {E[E(y | x)]}{E[E(y | x)]}′

= E{[E(y | x)][E(y | x)]′} − [E(y)][E(y)]′.

Thus Cov[E(y | x)] + E[Cov(y | x)] = E(yy′)− [E(y)][E(y)]′ = Cov(y).

Comment: g(x) = E(y | x) is a function of x. E(g(x)) = E(y). Cov(g(x)) ≤ Cov(y).

(3) Independence and parameters

x ∈ Rp and y ∈ Rq are indep.
def⇐⇒ f(x, y) = fx(x) fy(y)
∗

=⇒ E(xy′) = E(x) [E(y)]′
∗∗⇐⇒ Cov(x, y) = 0

def⇐⇒ x and y are uncorrelated

∗⇒: With E(xy′) = (E(XiYj))p×q and E(x)[E(y)]′ = (E(Xi)E(Yj))p×q

we show E(XiYj) = E(Xi)E(Yj).

E(XiYj) =
∫∫

Rp+q xiyjf(x, y) dx1, .., dxpdy1, .., dyq

=
∫∫

Rp xifx(x)dx1, .., dxp

∫∫
Rq yjfy(y) dy1, .., dyq = E(Xi)E(Yj)

∗∗⇔: Since Cov(x, y) = E(xy′)− E(x)[E(y)]′,
Cov(x, y) = 0 and E(xy′) = E(x) [E(y)]′ are equivalent.

2. Multivariate normal distributions

(1) Definition of normal distributions
With µ ∈ Rp and positive definite Σ ∈ Rp×p, let

f(x;µ, Σ) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
.

Then f(x;µ, Σ) > 0 and by the substitution of z = Σ−1/2(x − µ) ⇐⇒ x = Σ1/2z + µ with

J =
∂(x1,..,xp)
∂ (z1,..,zp)

= Σ1/2.∫∫
Rp

f(x)dx1, .., dxp =

∫∫
Rp

1

(2π)p/2
exp

(
−1

2
z′z

)
dz1, ..dzp =

p∏
i=1

∫
R

1√
2π

e−
z2i
2 dzi = 1
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So f(x;µ, Σ) is a pdf. The distribution of x ∈ Rp with pdf f(x;µ, Σ) is called a normal distribu-
tion denoted by x ∼ N(µ, Σ).

(2) Parameters of N(µ, Σ)
Calculation shows x ∼ N(µ, Σ) =⇒ x ∼ (µ, Σ).

(3) Transformation
If x ∼ N(µ, Σ) and A ∈ Rq×p has full row rank, then y = Ax+ b ∼ N(Aµ+ b, AΣA′)

Proof Skipped. Comment: Recall x ∼ (µ, Σ) =⇒ Ax+ b ∼ (Aµ+ b, AΣA′).

3. Marginal distributions and conditional distributions

(1) Marginal distributions
By the transformation one can easily see that the marginal distributions of a normal distribution
are normal distributions.

Ex1: x =

X1

X2

X3

 ∼ N

µ1

µ2

µ3

 ,

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3

.

Then X2 = (0, 1, 0)x ∼ N(µ2, σ
2
2) and(

X1

X3

)
=

(
1 0 0
0 0 1

)
x ∼ N

((
µ1

µ3

)
,

(
σ2
1 σ13

σ31 σ2
3

))
.

(2) Independence

Suppose

(
x
y

)
∼ N

((
µx

µy

)
,

(
Σx Σxy

Σyx Σy

))
. Then

x and y are indep. ⇐⇒ Σxy = 0 and Σyx = 0.

Proof Only give a sketch.

⇒: x and y are indep=⇒ x and y are uncorrelated.

⇐: f(x, y) = fx(x) fy(y).

(3) Conditional distributions

Suppose

(
x
y

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Let Σ11.2 = Σ11 − Σ12Σ
−1
22 Σ21 and Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12.

Then x | y ∼ N(µ1 +Σ12Σ
−1
22 (y − µ2), Σ11.2) and

y | x ∼ N(µ2 +Σ21Σ
−1
11 (x− µ1), Σ22.1).

Proof Only show the second one.(
z1
z2

)
=

(
I 0

−Σ21Σ
−1
11 I

)(
x
y

)
=

(
x

y − Σ21Σ
−1
11 x

)

∼ N

((
µ1

µ2 − Σ21Σ
−1
11 µ1

)
,

(
Σ11 0
0 Σ22.1

))
.

So z1 = x ∼ N(µ1, Σ11) and z2 = y−Σ21Σ
−1
11 x ∼ N(µ2−Σ21Σ

−1
11 µ1, Σ22.1) are independent.

Thus z2 | z1 ∼ z2 ∼ N(µ2 − Σ21Σ
−1
11 µ1, Σ22.1).

Therefore z2 +Σ21Σ
−1
11 z1 | z1 ∼ N(µ2 +Σ21Σ

−1
11 (z1 − µ1), Σ22.1), i.e.,

y | x ∼ N(µ2 +Σ21Σ
−1
11 (x− µ1), Σ22.1).
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