L02: Basic statistics

1. Sample mean vector and sample covariance matrix
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(4)

Data matrix

Ty
Population | : |. Data matrix X = (i) nxp-
Lp
Tr1
X’ = (x1, ..., X, ) contains n observations from the population. Here x, = - |, arowin X.
Lrp
T1q
X = (x(1), .-, X(p)) contains p samples from the p population. Here x(;) = |, a column of X.
Tni

Sample mean vector

% M .
where T; = x“# is the mean of the ith sample x;).

, n
X1, _ 2re1 Xr —
n n

X =
Tp
X is the center of n observations since - (x; —X) = 0.
Scatter matrix
CSSCP = X’'HX = X/ (I — %) X is also called scatter matrix that can be expressed via
observations.
CSSCP =Y (%, —X)(x, —X)' =Y '_, X,X,, — nXX.
It can also be expressed via samples. For example
(CSSCP);; = x{;) Hx(;) = S (e —T)2 =300 22, — nT?

1
is from the sample x(;) that measures the magnitude of the value fluctuation in that sample and

(CSSCP)i; = x{; Hx(j) = 2op_y (¥ri — Ti) (2 — Tj) = o4y Thillj — NTT;
is from samples x(;) and x(;) that measures the correlation of the values in the two samples.
Two sample covariance matrices

g — CSSCP _
s, = SCCSP.

Sij)pxp With s;; > 0 denoted as s?, i = 1,..., p.

2. Sample correlation matrix

(1)

(2)

Definitions

From sample variance-covariance matrix S = (8;;)pxp,

let D? = diag(S) = diag(s?, ..., s7) be the sample variance matrix.
Then D = diag(sy, ..., $p) is the sample standard deviation matrix
and D! = diag(1/s1, ..., 1/sp).

Define R = D~!SD~! € RP*P and call it sample correlation matrix.
So R = (7ri;)pxp Where r;; = =4

57‘,57"

Correlation relation

Two samples x(;) and x(;) are positively correlated g T >0

— 83 > 0 <— CSSCP” >0
Two samples x(;) and x(;) are negatively correlated g, ri; <0

= 54 <0<+= CSSCP;; <0
Two samples x(;y and x(;) are uncorrelated g} ri; =0

<~ Sij = 0 <= CSSCPU =0



Comparing with s;; and CSSCP;;, r;; is better scaled since—1 < r;; <1 and
rij = —1 <= x(;) = ax(j) + b with a > 0;
2

Ex: Show r;; = 1. Method I: x(;) = Inx(;)+0. Sor; = 1. Method IT: 1j; = S = %i =1,

Si Sqi Si S

Equivalent expressions
P o— _Sid__ CSSCP; _ (50)is
ij V/Sii S35 /CSSCP,, CSSCP;;, Vi (505
Proof r;; = S M CSSCPy,;
(] Sii Sjj V/MSii NSjj \/CSSCP“ CSSCP]»]-
_ CSSCPij/(n—l) (5u)ij

VCSSCP.,/(n—1)CSSCP,, /(n—1)  /Guw)ii (533

Matrix forms:
For CSSCP = (CSSCPij)pxp7 let DQCSSCP = diag(CSSCP).
For S, let D§ = diag(S,). Then

_Pp-lap-! _ p-1 -l _p=l >
R=D"'SD"" = Dg S,Dg, = Dgqcp(CSSCP)D(ggrp-

3. Comments on two exercises

(1)

1.4.1: A transformation on population
Ty
From population | : | data matrix X € R"*? is obtained. It in turn produced sample meran
Tp
vector X = Xlnl" and sample covariance matrix S = X’ %X.
Y1 T
If transformation on the population | : = A | . | + b is performed, then data matrix is
Yq Zp

transformed to Y where Y’ = AX’ + bl/,. By 1.4.1 the new sample mean vector is AX + b and
the new sample covariance matrix is ASA’.
1.4.2: Minimized S(«)
Let S(a) =Y 1, (xr — a)(x, — @)’. In 1.4.2 we see that S(a) =S+ (X — a)(X — a)’.
We claim that S is minimized S(«) in the following sense.
(i) [S(@)| = [S]. So [S| = min, [S(a)].
(ii) tr[S(a)] > tr(S). So tr(S) = min, tr(S(a)).
(iii) S(a) > S defined as S(«) — S is a non-negative definite matrix. So S = min, (S(«)).
. Ay A _ -
(i) For A = Ai Az)’ let A11.2 = A11 — A12A5) Aoy and Ags 1 = Agy — As1 AT Aga.
Then |A‘ = ‘A11| . |A22_1| = |A11_2| ‘AQQ‘ (covered in Stat?Ol)
(v _ /
So with A = (Xla (XS @) ) Al = 1S+ (X—a)(X—a)'| = [1+(X—a)'S~L(x—a)]|S].
Thus [S(a)| =[1+ (X — «)/S7HX — )] S| > |S|.
(ii) See HWO1

(iii) S(a) =S = (X — a)(X — «)’ is a non-negative definite matrix.



LO03: Distribution of multivariate population

0. Computation for statistics

1 2
(1) Entering data matrix X = [3 4
5 6
data a;
datalines; data a;
1 9 ’ infile "D:\myStat776\MyData.txt";
34 put x1 x2;
56
(2) Requesting statistics
proc corr; proc corr SSCP CSSCP COV;
var x1 x2; var x1 x2;
run; run;
1. Population distributions
(1) Probability density function (pdf)
Xy
Distribution of continuous population X = | @ | is given by its pdf f(x) = f(x1,..,2p) > 0 such
Xp

that P(X € A) = [[, f(x1,..,xp) dxy, .., dxyp.
A function f(x) can be used as a pdf if (i) f(x) > 0 and (ii) [, f(z1,...,zp)dz1, . .dx, = 1.
(2) Cumulative distribution function (cdf)
X1
Distribution of X = | : | can be given by its cdf
Xp
F(x) = F(z1,..,2p) = P(x1 < 21,...,%xp, < zp) = P(X <x).
(3) Relations
For continuous X € RP with pdf f(x), the cdf
F(x) = P(X < x) = [* dwy--- ["7 f(z1,..,2p)dxy. If cdf F(x) is given, then the pdf is
_ P F(x1,..,xp)
[, ap) = T Ox1,..m,

Ex1l: X = (ﬁl) has pdf f(z1, 2z2) =1on 0 <z <1and 0<axs <1. Then its cdf
2

0, x1 <0orxs <0

F(z1, x2) = P(X; <21, Xp < 29) = { min(1, 21) - min(l, 22), 21> 0and 23 >0 °



2. Marginal distributions
(1) Marginal pdf
<§> where X € RP and Y € R? has joint pdf f(x, y) = f(z1,..,Zp, y1, ., Yq)- Then the marginal

pdf of X is fx(x) = [[p, f(x, ¥)dy1, .., dyq.
Proof Let fx(x) = [[p, f(x,y)dy1,..,dy,. Then fx(x)>0since f(x,y) > 0.
For A C Rp
P(XeA) = PXeAYeRY) ffxEA yera [ (X, y)dzy, .dxy, dys, ..., dyq

= ffAdxla- dzpfqu X, y)dyi,..,dyq = ffAfX Yz, ..dz,.

So fx(x) is the pdf for X.

(2) Ex2
From joint pdf f(z1, 22) =2on 0 <z <land 0 <y <1 -y,
0, 1 <Qorxz >1
film) Ju (e, o) = { fol ?2dxe, 0<uz;<1
. 0, 1 <0ora; >1
- 2(1—1‘1), Ofl‘l Sl

Similarly, fo(z2) = { (2)’(1 ), gx§<xg grlxg >1
3. Conditional distribution and independence
(1) Conditional pdf
J(x, y) is Joint pdf for <‘)Y(> where X € R? and Y € R?. fy(y) is the marginal pdf for Y. As a

function of x, f(x|y) = % > 0 and

, f(x, y)dxy, .., dz,
[ reyydonda, = [[ I an, .. i, - Al 1 Ly,

Re re Jy( fy(¥)
So f(x]y) is a class of pdf function of x with index y. This pdf is the conditional pdf of X given
Y=y.

(2) Independence
X and Y are independent &, fxly) = fx(x) < L f(:(y’;) = fx(x)
= fxy) = fx(X) fr(y) <= 55 = £ (y) <= flylx) = fr(v)

Ex3: In Ex2: f(z1,22) =20on0<z; <land0<zy <1l-uxq, fi(z1) =2(1—2z1)on 0 < x; < 1.
So f(xalxy) = 1_1331 on 0 < a9 <1—u,ie, Xo|lx; ~U(0, 1 —xq).

Ex4: In Ex1: f(z1,22) =1 on 0 < 27 < 1. We can derive that fi(z1) =1on 0 < z; <1 and
fa(za) =1 on 0 <z9 < 1. So X; and X are independent since f(z1, x2) = f1(z1) fo(x2).




