
L02: Basic statistics

1. Sample mean vector and sample covariance matrix

(1) Data matrix

Population

x1

...
xp

. Data matrix X = (xij)n×p.

X′ = (x1, ...,xn) contains n observations from the population. Here xr =

xr1

...
xrp

, a row in X.

X = (x(1), ..,x(p)) contains p samples from the p population. Here x(i) =

x1i

...
xni

, a column of X.

(2) Sample mean vector

x = X′1n

n =
∑n

r=1 xr

n =

x1

...
xp

 where xi =
x′
(i)1

′
n

n is the mean of the ith sample x(i).

x is the center of n observations since
∑n

i=1(xi − x) = 0.

(3) Scatter matrix

CSSCP = X′HX = X′
(
I− 1n1

′
n

n

)
X is also called scatter matrix that can be expressed via

observations.
CSSCP =

∑n
r=1(xr − x)(xr − x)′ =

∑n
r=1 xrx

′
r − nxx′.

It can also be expressed via samples. For example
(CSSCP)ii = x′

(i)Hx(i) =
∑n

r=1(xri − xi)
2 =

∑n
r=1 x

2
ki − nx2

i

is from the sample x(i) that measures the magnitude of the value fluctuation in that sample and
(CSSCP)ij = x′

(i)Hx(j) =
∑n

k=1(xki − xi)(xkj − xj) =
∑n

k=1 xkixkj − nxixj

is from samples x(i) and x(j) that measures the correlation of the values in the two samples.

(4) Two sample covariance matrices

S = CSSCP
n = (sij)p×p with sii > 0 denoted as s2i , i = 1, ..., p.

Su = SCCSP
n=1 .

2. Sample correlation matrix

(1) Definitions
From sample variance-covariance matrix S = (sij)p×p,
let D2 = diag(S) = diag(s21, ..., s

2
p) be the sample variance matrix.

Then D = diag(s1, ..., sp) is the sample standard deviation matrix
and D−1 = diag(1/s1, ..., 1/sp).
Define R = D−1SD−1 ∈ Rp×p and call it sample correlation matrix.
So R = (rij)p×p where rij =

sij
si sj

.

(2) Correlation relation

Two samples x(i) and x(j) are positively correlated
def⇐⇒ rij > 0
⇐⇒ sij > 0 ⇐⇒ CSSCPij > 0

Two samples x(i) and x(j) are negatively correlated
def⇐⇒ rij < 0
⇐⇒ sij < 0 ⇐⇒ CSSCPij < 0

Two samples x(i) and x(j) are uncorrelated
def⇐⇒ rij = 0
⇐⇒ sij = 0 ⇐⇒ CSSCPij = 0
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Comparing with sij and CSSCPij , rij is better scaled since−1 ≤ rij ≤ 1 and
rij = −1 ⇐⇒ x(i) = ax(j) + b with a > 0;
rij = 1 ⇐⇒ x(i) = ax(j) + b with a < 0.

Ex: Show rii = 1. Method I: x(i) = Inx(i)+0. So rii = 1. Method II: rii =
sii
si si

=
s2i

si si
= 1.

(3) Equivalent expressions

rij =
sij√
sii sjj

=
CSSCPij√

CSSCPiiCSSCPjj

=
(su)ij√

(su)ii (su)jj
.

Proof rij =
sij√
sii sjj

=
nsij√

nsii nsjj
=

CSSCPij√
CSSCPiiCSSCPjj

=
CSSCPij/(n−1)√

CSSCPii/(n−1)CSSCPjj/(n−1)
=

(su)ij√
(su)ii (su)jj

.

Matrix forms:
For CSSCP = (CSSCPij)p×p, let D

2
CSSCP = diag(CSSCP).

For Su let D2
Su

= diag(Su). Then

R = D−1SD−1 = D−1
Su

SuD
−1
Su

= D−1

CSSCP(CSSCP)D−1

CSSCP.

3. Comments on two exercises

(1) 1.4.1: A transformation on population

From population

x1

...
xp

 data matrix X ∈ Rn×p is obtained. It in turn produced sample meran

vector x = X′1n

n and sample covariance matrix S = X′H
n X.

If transformation on the population

y1
...
yq

 = A

x1

...
xp

 + b is performed, then data matrix is

transformed to Y where Y′ = AX′ + b1′
n. By 1.4.1 the new sample mean vector is Ax+ b and

the new sample covariance matrix is ASA′.

(2) 1.4.2: Minimized S(α)
Let S(α) =

∑n
r=1(xr − α)(xr − α)′. In 1.4.2 we see that S(α) = S+ (x− α)(x− α)′.

We claim that S is minimized S(α) in the following sense.
(i) |S(α)| ≥ |S|. So |S| = minα |S(α)|.
(ii) tr[S(α)] ≥ tr(S). So tr(S) = minα tr(S(α)).
(iii) S(α) ≥ S defined as S(α)− S is a non-negative definite matrix. So S = minα(S(α)).

(i) For A =

(
A11 A12

A21 A22

)
, let A11.2 = A11 −A12A

−1
22 A21 and A22.1 = A22 −A21A

−1
11 A12.

Then |A| = |A11| · |A22.1| = |A11.2| |A22| (covered in Stat701).

So with A =

(
1 −(x− α)′

x− α S

)
, |A| = 1 · |S+(x−α)(x−α)′| = [1+(x−α)′S−1(x−α)] |S|.

Thus |S(α)| = [1 + (x− α)′S−1(x− α)] |S| ≥ |S|.
(ii) See HW01

(iii) S(α)− S = (x− α)(x− α)′ is a non-negative definite matrix.
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L03: Distribution of multivariate population

0. Computation for statistics

(1) Entering data matrix X =

1 2
3 4
5 6

.

data a;

input x1 x2;

datalines;

1 2

3 4

5 6

;

data a;

infile "D:\myStat776\MyData.txt";

put x1 x2;

(2) Requesting statistics

proc corr;

var x1 x2;

run;

proc corr SSCP CSSCP COV;

var x1 x2;

run;

1. Population distributions

(1) Probability density function (pdf)

Distribution of continuous population X =

X1

...
Xp

 is given by its pdf f(x) = f(x1, .., xp) ≥ 0 such

that P (X ∈ A) =
∫∫

A
f(x1, .., xp) dx1, .., dxp.

A function f(x) can be used as a pdf if (i) f(x) ≥ 0 and (ii)
∫∫

Rp f(x1, ..., xp)dx1, ..dxp = 1.

(2) Cumulative distribution function (cdf)

Distribution of X =

X1

...
Xp

 can be given by its cdf

F (x) = F (x1, .., xp) = P (x1 ≤ x1, ...,xp ≤ xp) = P (X ≤ x).

(3) Relations
For continuous X ∈ Rp with pdf f(x), the cdf
F (x) = P (X ≤ x) =

∫ x1

−∞ dx1 · · ·
∫ xp

−∞ f(x1, .., xp)dxp. If cdf F (x) is given, then the pdf is

f(x1, .., xp) =
∂p F (x1,..,xp)

∂ x1,..,xp
.

Ex1: X =

(
X1

X2

)
has pdf f(x1, x2) = 1 on 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. Then its cdf

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2) =

{
0, x1 < 0 or x2 < 0
min(1, x1) ·min(1, x2), x1 ≥ 0 and x2 ≥ 0

.
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2. Marginal distributions

(1) Marginal pdf(
X
Y

)
where X ∈ Rp and Y ∈ Rq has joint pdf f(x, y) = f(x1, .., xp, y1, .., yq). Then the marginal

pdf of X is fX(x) =
∫∫

Rq f(x, y)dy1, .., dyq.

Proof Let fX(x) =
∫∫

Rq f(x, y)dy1, .., dyq. Then fX(x) ≥ 0 since f(x, y) ≥ 0.
For A ⊂ Rp,

P (X ∈ A) = P (X ∈ A, Y ∈ Rq) =
∫∫

x∈A,y∈Rq f(x, y)dx1, ..dxp, dy1, ..., dyq
=

∫∫
A
dx1, .., dxp

∫∫
Rq f(x, y)dy1, .., dyq =

∫∫
A
fX(x)dx1, ..dxp.

So fX(x) is the pdf for X.

(2) Ex2
From joint pdf f(x1, x2) = 2 on 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1− x1,

f1(x1) =
∫
R
f(x1, x2)dx2 =

{
0, x1 < 0 or x1 > 1∫ 1−x2

0
2dx2, 0 ≤ x1 ≤ 1

=

{
0, x1 < 0 or x1 > 1
2(1− x1), 0 ≤ x1 ≤ 1

Similarly, f2(x2) =

{
0, xx < 0 or x2 > 1
2(1− x2), 0 ≤ x2 ≤ 1

.

3. Conditional distribution and independence

(1) Conditional pdf

f(x, y) is joint pdf for

(
X
Y

)
where X ∈ Rp and Y ∈ Rq. fY (y) is the marginal pdf for Y. As a

function of x, f(x|y) = f(x,y)
fy(y)

≥ 0 and∫∫
Rp

f(x|y) dx1, .., dxp =

∫∫
Rp

f(x, y)

fy(y)
dx1, .., dxp =

∫∫
Rp f(x, y)dx1, .., dxp

fy(y)
= 1.

So f(x|y) is a class of pdf function of x with index y. This pdf is the conditional pdf of X given
Y = y.

(2) Independence

X and Y are independent
def⇐⇒ f(x|y) = fX(x) ⇐⇒ f(x,y)

fy(y)
= fX(x)

⇐⇒ f(x, y) = fX(x) fY (y) ⇐⇒ f(x,y)
fX(x) = fy(y) ⇐⇒ f(y|x) = fY (y)

Ex3: In Ex2: f(x1, x2) = 2 on 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1−x1, f1(x1) = 2(1−x1) on 0 ≤ x1 ≤ 1.
So f(x2|x1) =

1
1−x1

on 0 ≤ x2 ≤ 1− x1, i.e., X2|x1 ∼ U(0, 1− x1).

Ex4: In Ex1: f(x1, x2) = 1 on 0 ≤ x1 ≤ 1. We can derive that f1(x1) = 1 on 0 ≤ x1 ≤ 1 and
f2(x2) = 1 on 0 ≤ x2 ≤ 1. So X1 and X2 are independent since f(x1, x2) = f1(x1) f2(x2).
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