

L02: Basic statistics

1. Sample mean vector and sample covariance matrix

(1) Data matrix

Population $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$. Data matrix $\mathbf{X} = (x_{ij})_{n \times p}$.

$\mathbf{X}' = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ contains n observations from the population. Here $\mathbf{x}_r = \begin{pmatrix} x_{r1} \\ \vdots \\ x_{rp} \end{pmatrix}$, a row in \mathbf{X} .

$\mathbf{X} = (\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(p)})$ contains p samples from the n population. Here $\mathbf{x}_{(i)} = \begin{pmatrix} x_{1i} \\ \vdots \\ x_{ni} \end{pmatrix}$, a column of \mathbf{X} .

(2) Sample mean vector

$\bar{\mathbf{x}} = \frac{\mathbf{X}' \mathbf{1}_n}{n} = \frac{\sum_{r=1}^n \mathbf{x}_r}{n} = \begin{pmatrix} \bar{x}_1 \\ \vdots \\ \bar{x}_p \end{pmatrix}$ where $\bar{x}_i = \frac{\mathbf{x}'_{(i)} \mathbf{1}'_n}{n}$ is the mean of the i th sample $\mathbf{x}_{(i)}$.

$\bar{\mathbf{x}}$ is the center of n observations since $\sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) = 0$.

(3) Scatter matrix

$\text{CSSCP} = \mathbf{X}' \mathbf{H} \mathbf{X} = \mathbf{X}' \left(\mathbf{I} - \frac{\mathbf{1}_n \mathbf{1}'_n}{n} \right) \mathbf{X}$ is also called scatter matrix that can be expressed via observations.

$$\text{CSSCP} = \sum_{r=1}^n (\mathbf{x}_r - \bar{\mathbf{x}})(\mathbf{x}_r - \bar{\mathbf{x}})' = \sum_{r=1}^n \mathbf{x}_r \mathbf{x}'_r - n \bar{\mathbf{x}} \bar{\mathbf{x}}'.$$

It can also be expressed via samples. For example

$$(\text{CSSCP})_{ii} = \mathbf{x}'_{(i)} \mathbf{H} \mathbf{x}_{(i)} = \sum_{r=1}^n (x_{ri} - \bar{x}_i)^2 = \sum_{r=1}^n x_{ki}^2 - n \bar{x}_i^2$$

is from the sample $\mathbf{x}_{(i)}$ that measures the magnitude of the value fluctuation in that sample and

$$(\text{CSSCP})_{ij} = \mathbf{x}'_{(i)} \mathbf{H} \mathbf{x}_{(j)} = \sum_{k=1}^n (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j) = \sum_{k=1}^n x_{ki} x_{kj} - n \bar{x}_i \bar{x}_j$$

is from samples $\mathbf{x}_{(i)}$ and $\mathbf{x}_{(j)}$ that measures the correlation of the values in the two samples.

(4) Two sample covariance matrices

$\mathbf{S} = \frac{\text{CSSCP}}{n} = (s_{ij})_{p \times p}$ with $s_{ii} > 0$ denoted as s_i^2 , $i = 1, \dots, p$.
 $\mathbf{S}_u = \frac{\text{SCCSP}}{n-1}$.

2. Sample correlation matrix

(1) Definitions

From sample variance-covariance matrix $\mathbf{S} = (s_{ij})_{p \times p}$,

let $\mathbf{D}^2 = \text{diag}(\mathbf{S}) = \text{diag}(s_1^2, \dots, s_p^2)$ be the sample variance matrix.

Then $\mathbf{D} = \text{diag}(s_1, \dots, s_p)$ is the sample standard deviation matrix and $\mathbf{D}^{-1} = \text{diag}(1/s_1, \dots, 1/s_p)$.

Define $\mathbf{R} = \mathbf{D}^{-1} \mathbf{S} \mathbf{D}^{-1} \in R^{p \times p}$ and call it sample correlation matrix.

So $\mathbf{R} = (r_{ij})_{p \times p}$ where $r_{ij} = \frac{s_{ij}}{s_i s_j}$.

(2) Correlation relation

$$\begin{aligned} \text{Two samples } \mathbf{x}_{(i)} \text{ and } \mathbf{x}_{(j)} \text{ are positively correlated} &\iff r_{ij} > 0 \\ &\iff s_{ij} > 0 \iff \text{CSSCP}_{ij} > 0 \end{aligned}$$

$$\begin{aligned} \text{Two samples } \mathbf{x}_{(i)} \text{ and } \mathbf{x}_{(j)} \text{ are negatively correlated} &\iff r_{ij} < 0 \\ &\iff s_{ij} < 0 \iff \text{CSSCP}_{ij} < 0 \end{aligned}$$

$$\begin{aligned} \text{Two samples } \mathbf{x}_{(i)} \text{ and } \mathbf{x}_{(j)} \text{ are uncorrelated} &\iff r_{ij} = 0 \\ &\iff s_{ij} = 0 \iff \text{CSSCP}_{ij} = 0 \end{aligned}$$

Comparing with s_{ij} and CSSCP_{ij} , r_{ij} is better scaled since $-1 \leq r_{ij} \leq 1$ and

$$\begin{aligned} r_{ij} = -1 &\iff \mathbf{x}_{(i)} = a\mathbf{x}_{(j)} + \mathbf{b} \text{ with } a > 0; \\ r_{ij} = 1 &\iff \mathbf{x}_{(i)} = a\mathbf{x}_{(j)} + \mathbf{b} \text{ with } a < 0. \end{aligned}$$

Ex: Show $r_{ii} = 1$. Method I: $\mathbf{x}_{(i)} = \mathbf{I}_n \mathbf{x}_{(i)} + \mathbf{0}$. So $r_{ii} = 1$. Method II: $r_{ii} = \frac{s_{ii}}{s_i s_i} = \frac{s_i^2}{s_i s_i} = 1$.

(3) Equivalent expressions

$$r_{ij} = \frac{s_{ij}}{\sqrt{s_{ii} s_{jj}}} = \frac{\text{CSSCP}_{ij}}{\sqrt{\text{CSSCP}_{ii} \text{CSSCP}_{jj}}} = \frac{(s_u)_{ij}}{\sqrt{(s_u)_{ii} (s_u)_{jj}}}.$$

$$\begin{aligned} \text{Proof } r_{ij} &= \frac{s_{ij}}{\sqrt{s_{ii} s_{jj}}} = \frac{ns_{ij}}{\sqrt{ns_{ii} ns_{jj}}} = \frac{\text{CSSCP}_{ij}}{\sqrt{\text{CSSCP}_{ii} \text{CSSCP}_{jj}}} \\ &= \frac{\text{CSSCP}_{ij/(n-1)}}{\sqrt{\text{CSSCP}_{ii/(n-1)} \text{CSSCP}_{jj/(n-1)}}} = \frac{(s_u)_{ij}}{\sqrt{(s_u)_{ii} (s_u)_{jj}}}. \end{aligned}$$

Matrix forms:

For $\text{CSSCP} = (\text{CSSCP}_{ij})_{p \times p}$, let $\mathbf{D}_{\text{CSSCP}}^2 = \text{diag}(\text{CSSCP})$.

For \mathbf{S}_u let $\mathbf{D}_{\mathbf{S}_u}^2 = \text{diag}(\mathbf{S}_u)$. Then

$$\mathbf{R} = \mathbf{D}^{-1} \mathbf{S} \mathbf{D}^{-1} = \mathbf{D}_{\mathbf{S}_u}^{-1} \mathbf{S}_u \mathbf{D}_{\mathbf{S}_u}^{-1} = \mathbf{D}_{\text{CSSCP}}^{-1} (\text{CSSCP}) \mathbf{D}_{\text{CSSCP}}^{-1}.$$

3. Comments on two exercises

(1) 1.4.1: A transformation on population

From population $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ data matrix $\mathbf{X} \in R^{n \times p}$ is obtained. It in turn produced sample meran

vector $\bar{\mathbf{x}} = \frac{\mathbf{X}' \mathbf{1}_n}{n}$ and sample covariance matrix $\mathbf{S} = \mathbf{X}' \frac{\mathbf{H}}{n} \mathbf{X}$.

If transformation on the population $\begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} = \mathbf{A} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} + \mathbf{b}$ is performed, then data matrix is

transformed to \mathbf{Y} where $\mathbf{Y}' = \mathbf{A} \mathbf{X}' + \mathbf{b} \mathbf{1}'_n$. By 1.4.1 the new sample mean vector is $\mathbf{A} \bar{\mathbf{x}} + \mathbf{b}$ and the new sample covariance matrix is $\mathbf{A} \mathbf{S} \mathbf{A}'$.

(2) 1.4.2: Minimized $\mathbf{S}(\alpha)$

Let $\mathbf{S}(\alpha) = \sum_{r=1}^n (\mathbf{x}_r - \alpha)(\mathbf{x}_r - \alpha)'$. In 1.4.2 we see that $\mathbf{S}(\alpha) = \mathbf{S} + (\bar{\mathbf{x}} - \alpha)(\bar{\mathbf{x}} - \alpha)'$.

We claim that \mathbf{S} is minimized $\mathbf{S}(\alpha)$ in the following sense.

(i) $|\mathbf{S}(\alpha)| \geq |\mathbf{S}|$. So $|\mathbf{S}| = \min_{\alpha} |\mathbf{S}(\alpha)|$.

(ii) $\text{tr}[\mathbf{S}(\alpha)] \geq \text{tr}(\mathbf{S})$. So $\text{tr}(\mathbf{S}) = \min_{\alpha} \text{tr}(\mathbf{S}(\alpha))$.

(iii) $\mathbf{S}(\alpha) \geq \mathbf{S}$ defined as $\mathbf{S}(\alpha) - \mathbf{S}$ is a non-negative definite matrix. So $\mathbf{S} = \min_{\alpha} (\mathbf{S}(\alpha))$.

(i) For $\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$, let $A_{11,2} = A_{11} - A_{12} A_{22}^{-1} A_{21}$ and $A_{22,1} = A_{22} - A_{21} A_{11}^{-1} A_{12}$.

Then $|A| = |A_{11}| \cdot |A_{22,1}| = |A_{11,2}| |A_{22}|$ (covered in Stat701).

So with $A = \begin{pmatrix} 1 & -(\bar{\mathbf{x}} - \alpha)' \\ \bar{\mathbf{x}} - \alpha & \mathbf{S} \end{pmatrix}$, $|A| = 1 \cdot |\mathbf{S} + (\bar{\mathbf{x}} - \alpha)(\bar{\mathbf{x}} - \alpha)'| = [1 + (\bar{\mathbf{x}} - \alpha)' \mathbf{S}^{-1} (\bar{\mathbf{x}} - \alpha)] |\mathbf{S}|$.

Thus $|\mathbf{S}(\alpha)| = [1 + (\bar{\mathbf{x}} - \alpha)' \mathbf{S}^{-1} (\bar{\mathbf{x}} - \alpha)] |\mathbf{S}| \geq |\mathbf{S}|$.

(ii) See HW01

(iii) $\mathbf{S}(\alpha) - \mathbf{S} = (\bar{\mathbf{x}} - \alpha)(\bar{\mathbf{x}} - \alpha)'$ is a non-negative definite matrix.

L03: Distribution of multivariate population

0. Computation for statistics

(1) Entering data matrix $\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$.

```
data a;
input x1 x2;
datalines;
1 2
3 4
5 6
;
```

```
data a;
infile "D:\myStat776\MyData.txt";
put x1 x2;
```

(2) Requesting statistics

```
proc corr;
var x1 x2;
run;
```

```
proc corr SSCP CSSCP COV;
var x1 x2;
run;
```

1. Population distributions

(1) Probability density function (pdf)

Distribution of continuous population $\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$ is given by its pdf $f(\mathbf{x}) = f(x_1, \dots, x_p) \geq 0$ such that $P(\mathbf{X} \in A) = \iint_A f(x_1, \dots, x_p) dx_1, \dots, dx_p$.

A function $f(\mathbf{x})$ can be used as a pdf if (i) $f(\mathbf{x}) \geq 0$ and (ii) $\iint_{R^p} f(x_1, \dots, x_p) dx_1, \dots, dx_p = 1$.

(2) Cumulative distribution function (cdf)

Distribution of $\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$ can be given by its cdf $F(\mathbf{x}) = F(x_1, \dots, x_p) = P(\mathbf{x}_1 \leq x_1, \dots, \mathbf{x}_p \leq x_p) = P(\mathbf{X} \leq \mathbf{x})$.

(3) Relations

For continuous $\mathbf{X} \in R^p$ with pdf $f(\mathbf{x})$, the cdf

$F(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_p} f(x_1, \dots, x_p) dx_p$. If cdf $F(\mathbf{x})$ is given, then the pdf is $f(x_1, \dots, x_p) = \frac{\partial^p F(x_1, \dots, x_p)}{\partial x_1, \dots, \partial x_p}$.

Ex1: $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has pdf $f(x_1, x_2) = 1$ on $0 \leq x_1 \leq 1$ and $0 \leq x_2 \leq 1$. Then its cdf

$$F(x_1, x_2) = P(\mathbf{X}_1 \leq x_1, \mathbf{X}_2 \leq x_2) = \begin{cases} 0, & x_1 < 0 \text{ or } x_2 < 0 \\ \min(1, x_1) \cdot \min(1, x_2), & x_1 \geq 0 \text{ and } x_2 \geq 0 \end{cases}.$$

2. Marginal distributions

(1) Marginal pdf

$\binom{\mathbf{X}}{\mathbf{Y}}$ where $\mathbf{X} \in R^p$ and $\mathbf{Y} \in R^q$ has joint pdf $f(\mathbf{x}, \mathbf{y}) = f(x_1, \dots, x_p, y_1, \dots, y_q)$. Then the marginal pdf of \mathbf{X} is $f_X(\mathbf{x}) = \iint_{R^q} f(\mathbf{x}, \mathbf{y}) dy_1, \dots, dy_q$.

Proof Let $f_X(\mathbf{x}) = \iint_{R^q} f(\mathbf{x}, \mathbf{y}) dy_1, \dots, dy_q$. Then $f_X(\mathbf{x}) \geq 0$ since $f(\mathbf{x}, \mathbf{y}) \geq 0$.

For $A \subset R^p$,

$$\begin{aligned} P(\mathbf{X} \in A) &= P(\mathbf{X} \in A, \mathbf{Y} \in R^q) = \iint_{\mathbf{x} \in A, \mathbf{y} \in R^q} f(\mathbf{x}, \mathbf{y}) dx_1, \dots, dx_p, dy_1, \dots, dy_q \\ &= \iint_A dx_1, \dots, dx_p \iint_{R^q} f(\mathbf{x}, \mathbf{y}) dy_1, \dots, dy_q = \iint_A f_X(\mathbf{x}) dx_1, \dots, dx_p. \end{aligned}$$

So $f_X(\mathbf{x})$ is the pdf for \mathbf{X} .

(2) Ex2

From joint pdf $f(x_1, x_2) = 2$ on $0 \leq x_1 \leq 1$ and $0 \leq x_2 \leq 1 - x_1$,

$$\begin{aligned} f_1(x_1) &= \int_R f(x_1, x_2) dx_2 = \begin{cases} 0, & x_1 < 0 \text{ or } x_1 > 1 \\ \int_0^{1-x_1} 2 dx_2, & 0 \leq x_1 \leq 1 \end{cases} \\ &= \begin{cases} 0, & x_1 < 0 \text{ or } x_1 > 1 \\ 2(1 - x_1), & 0 \leq x_1 \leq 1 \end{cases} \end{aligned}$$

$$\text{Similarly, } f_2(x_2) = \begin{cases} 0, & x_2 < 0 \text{ or } x_2 > 1 \\ 2(1 - x_2), & 0 \leq x_2 \leq 1 \end{cases}.$$

3. Conditional distribution and independence

(1) Conditional pdf

$f(\mathbf{x}, \mathbf{y})$ is joint pdf for $\binom{\mathbf{X}}{\mathbf{Y}}$ where $\mathbf{X} \in R^p$ and $\mathbf{Y} \in R^q$. $f_Y(\mathbf{y})$ is the marginal pdf for \mathbf{Y} . As a function of \mathbf{x} , $f(\mathbf{x}|\mathbf{y}) = \frac{f(\mathbf{x}, \mathbf{y})}{f_Y(\mathbf{y})} \geq 0$ and

$$\iint_{R^p} f(\mathbf{x}|\mathbf{y}) dx_1, \dots, dx_p = \iint_{R^p} \frac{f(\mathbf{x}, \mathbf{y})}{f_Y(\mathbf{y})} dx_1, \dots, dx_p = \frac{\iint_{R^p} f(\mathbf{x}, \mathbf{y}) dx_1, \dots, dx_p}{f_Y(\mathbf{y})} = 1.$$

So $f(\mathbf{x}|\mathbf{y})$ is a class of pdf function of \mathbf{x} with index \mathbf{y} . This pdf is the conditional pdf of \mathbf{X} given $\mathbf{Y} = \mathbf{y}$.

(2) Independence

$$\begin{aligned} \mathbf{X} \text{ and } \mathbf{Y} \text{ are independent} &\stackrel{\text{def}}{\iff} f(\mathbf{x}|\mathbf{y}) = f_X(\mathbf{x}) \iff \frac{f(\mathbf{x}, \mathbf{y})}{f_Y(\mathbf{y})} = f_X(\mathbf{x}) \\ &\iff f(\mathbf{x}, \mathbf{y}) = f_X(\mathbf{x}) f_Y(\mathbf{y}) \iff \frac{f(\mathbf{x}, \mathbf{y})}{f_X(\mathbf{x})} = f_Y(\mathbf{y}) \iff f(\mathbf{y}|\mathbf{x}) = f_Y(\mathbf{y}) \end{aligned}$$

Ex3: In Ex2: $f(x_1, x_2) = 2$ on $0 \leq x_1 \leq 1$ and $0 \leq x_2 \leq 1 - x_1$, $f_1(x_1) = 2(1 - x_1)$ on $0 \leq x_1 \leq 1$.

So $f(x_2|x_1) = \frac{1}{1-x_1}$ on $0 \leq x_2 \leq 1 - x_1$, i.e., $X_2|x_1 \sim U(0, 1 - x_1)$.

Ex4: In Ex1: $f(x_1, x_2) = 1$ on $0 \leq x_1 \leq 1$. We can derive that $f_1(x_1) = 1$ on $0 \leq x_1 \leq 1$ and $f_2(x_2) = 1$ on $0 \leq x_2 \leq 1$. So X_1 and X_2 are independent since $f(x_1, x_2) = f_1(x_1) f_2(x_2)$.