L26 DFFITS and Cook’s D

1. Statistics for identifying outliers

(1) Residuals and deleted residuals

The ith residual RZ = /él =Y — :171 ~ N (0, (1 - hZZ)O'Q)

The ith deleted residual PRESS; = €;;y = yi — Ui(s) = 1?—;1” ~ N (0, lf—zu)

(2) Studentized residuals and sudentized deleted residuals
é\i =Y — /y\z ~ N (0, (1 — hn‘)UQ) — m ~ N(O, 12).
. . . o & - _
The ith studentized residual STUDENT; =t; = T VSE t(n — p).
S . & 2 Ci() 2 2
Citi) = Yi = Yit) = 100y ~ N (0’ 15,“2.) = i~ Jamger ~ V01
The ith studentized deleted residual RSTUDENT = ¢(;) = ~tn—1—p).

2]
(1—his) MSE(;)

Comment: Standardizing e; and ;(;) lead to the same ﬁ ~ N(0, 1%).
—hii)o

In studentizing €;, o2 is replaced by MSE that resulted in

~ t(n — p).

e

STUDENT; =
(1= hy) MSE

In studentizing e;(;), o? is replaced by M SE(; that resulted in

RSTUDEHT; = G ~tn—1—p).
\/(1 — hi;) MSE;
2. DFFITS
(1) Difference of fitted values
The sth difference of fitted values L R L
Y=Yy = Yi—YitY —Yiu = —€+eu =€+ 1€

N L h2.
= e~ N, (- hio?) = N (0, 0?).

hii ~
~ o~ €; PN h2,
S AN — 1-h;; v — hu .~ N i 2
S0 Ui = His) = { hii€ii) BRI ( » Tohi ¥ )

(2) Two studentized difference of fitted values

Standardizing ¥; — i), NG 02;/%1) — = \/(1_52__)02 ~ N(0, 1%).

~t(n—p) and ————— ~ t(n—1—p)

Two studentized ¥; — Uiy, (1—hyi) MSE,;)

are studentized residual and studentized deleted residual.

Comment: Standardizing y; — ¥i, vi — i) and ¥ — Y lead to the same
ﬁ ~ N(0, 12) with two studentized forms: Studentized residual and Stu-
dentized deleted residual.



(3) DFFITS
Define DFFITS; = —2 %0

/hii MSE(;,

Then  DFFITS; = [y 5 = \/E G =

So DFFITS; ~ /2= t(n — 1 —p)
By the rule of thumb, if |DFFITS;| > 2\/%, then the ith observation is an outlier.

hii
T—hy L)

Ex1: Express DFFITS; through e;, €;;) and t()

DFFITS; = 4/ MS%(Z) - ez i =/ MS%(Z)

3. Cook’s D

ta)-

(1) Squared norm of difference of fitted vectors
~ ~ n ~ ~ 2
17— y(i)H2 =300 (U = Ti) "
(2) Cook’s
Define D; = ”?;1\385"‘

(3) Appication
Large D; indicates that the ith observation is an outlier.
By the rule of thumb, the cut-off value for D; is %.

x : SAS

proc reg;
model y=x1 x2;
output out=b P=P R=R H=H STUDENT=STUDENT
PRESS=PRESS RSTUDENT=RSTUDENT
DFFITS=DFFITS COOKD=COOKD;
run;
proc print;
run;




L27 Multicollinearity

1. Multicollinearity

(1)

An assumption
Based on sample y ~ N(X 3, 02I,,) from a regression model, 3 can be estimated by its
MLE and LSE 3 = (X'X)"'X'y ~ N (B, o*(X'X)~1). To get this estimator there is an
underlying assumption: X’X is non-singular. This assumption has many different but
equivalent forms. For example

(i) The columns of X € RP are linearly independent;

(ii) No column of X is a linear combination of others;

(iii) |X'X| > 0.
Multicollinearity

There is multicollinearity in X £, The columns of X are almost linearly dependent

<= One column of X is almost a LC of others
< |X'X| > 0 is almost 0.
Let X'X = QAQ’ be the eigenvalue decomposition of X’ X where the columns of Q are
eigenvectors of X’'X, @ is an orthogonal matrix (Q' = Q1); A = diag(A1, ..., Ap), Ai > 0,
i =1,...,p, are eigenvalues of X’'X. Because |X'X| = A;---\p, the multicollinearity is
reflected as the values of \; > 0 close to 0.

Consequence of multicollinearity R
If there is multicollinearity in X, then the total variance in 8 ~ N (0, o?(X'X)™1),

P var(B) = tr (cov(ﬁ)) = tr[o2(X'X) "] = o2tr[(QAQ) ]
= 2tr(QAIQ) = o2tr(AY) = o2 (A% T rlp)

will be vary large. So even though B is an unbiased estimator, but it is not stable.

2. Detecting multicollinearity

(1)

Sample correlation coefficient method

proc corr;
var x1 x2 x3;
run;

I ro rig
calculates and presents sample correlation coefficient matrix | 797 1 793 |. Because
rs; r3z 1
Irij| <1 and |ryj| =1 <= x; = ax;j +b, the value of |r;| close to 1 indicates that z; and
x; are almost correlated consequently there is multicollinearity in X.

Variance inflation factor method
Columns of X are almost linearly dependent if and only if one column, say x;, is almost a

linear combination of others. Thus regression model z; = So+5>_ ot Bjx;+e will produce

the coefficient of determination RZ2 will value close to 1. Consequently VIF; = lilRQ

1

called the variance inflation factor will also have large value.



proc reg;
model y=x1 x2 x3/vif;
run;

calculates and presents VIF;, i = 1, 2, 3. If one VIF; > 2.5, then we conclude the
problem of multicollinearity in X.

3. Ridge regression: A remedy

(1)

Ridge regression
With eigenvalue decomposition X'X = QAQ’, the LSE and MLE of 3 is

B=(X'X)"'X"y = (QAQ") ' X'y.

Small values of \; > 0 in A = diag(\i, ..., \p) caused multicollinearity. An naive and
intuitive idea is to add K = diag(k,...,kp) where k; > 0 for all ¢ to A to have a new
estimator BK) = [QA + K)Q') 1 X"y.

The diagonal elements of A form the ridge of A, the proposed approach elevates the ridge
and hence is called a ridge regression.

Compare performance of estimators
Let 7 be an estimator for n € R*¥. Then E|# — n||? is the mean squared error. When
comparing two estimators, the one with smaller mean squared error is the better one.

Elq—nl* = ElG-n)'@-n)
= E{[n—E®m + E® —n'lf— E®) + E@) —nl'}
= Eiln - EGI'0 - B+ [1EG) - Ell

ZZ (var(;) + || E() — B||* = Toal variance in 7 + (Bias)?.

Performance of (K)

(i) Ridge estimator is a biased estimator

E[B(K)] E{[Q(A+K)QT X'y}

4 E[(QAQ)'X'y) = E[(X'X)"1X"y] = (X'X) I X'Xf = §.

(ii) Ridge estimator reduces the total variance

S var[Bi(K)] = tr[Cov(B(K))]
= tr{o?[Q (A+K) Q1 1X’X[Q(A+K)‘ QJ}
o’tr[(A + K)AA+ K) T =0 Y, 5ty

< * Y5 =2 var(B)
(iii) Optimization
It has been shown that there are k;, k = 1, ..., p, such the mean squared error of ridge

estimator is less than that of MLE of 5. However these k; depend on parameters
and must be estimated.



