
L26 DFFITS and Cook’s D

1. Statistics for identifying outliers

(1) Residuals and deleted residuals

The ith residual Ri = êi = yi − ŷi ∼ N
(
0, (1− hii)σ

2
)
.

The ith deleted residual PRESSi = êi(i) = yi − ŷi(i)
∗

== êi
1−hii

∼ N
(
0, σ2

1−hii

)
.

(2) Studentized residuals and sudentized deleted residuals

êi = yi − ŷi ∼ N
(
0, (1− hii)σ

2
)
=⇒ êi√

(1−hii)σ2
∼ N(0, 12).

The ith studentized residual STUDENTi = ti =
êi√

(1−hii)MSE
∼ t(n− p).

êi(i) = yi − ŷi(i) =
êi

1−hii
∼ N

(
0, σ2

1−hii

)
=⇒ êi(i)√

σ2/(1−hii)
= êi√

(1−hii)σ2
∼ N(0, 12).

The ith studentized deleted residual RSTUDENT = t(i) =
êi√

(1−hii)MSE(i)
∼ t(n−1−p).

Comment: Standardizing êi and êi(i) lead to the same êi√
(1−hii)σ2

∼ N(0, 12).

In studentizing êi, σ
2 is replaced by MSE that resulted in

STUDENTi =
êi√

(1− hii)MSE
∼ t(n− p).

In studentizing êi(i), σ
2 is replaced by MSE(i) that resulted in

RSTUDEHTi =
êi√

(1− hii)MSE(i)

∼ t(n− 1− p).

2. DFFITS

(1) Difference of fitted values
The ith difference of fitted values
ŷi − ŷi(i) = ŷi − yi + yi − ŷi(i) = −êi + êi(i) = −êi +

1
1−hii

êi

= hii
1−hii

êi ∼ hii
1−hii

N(0, (1− hii)σ
2) = N

(
0,

h2
ii

1−hii
σ2

)
.

So ŷi − ŷi(i) =

{ hii
1−hii

êi
hiiêi(i)

= hii
1−hii

êi ∼ N
(
0,

h2
ii

1−hii
σ2

)
(2) Two studentized difference of fitted values

Standardizing ŷi − ŷi(i),
ŷi−ŷi(i)√

h2
iiσ

2/(1−hii)
= êi√

(1−hii)σ2
∼ N(0, 12).

Two studentized ŷi − ŷi(i),
êi√

(1−hii)MSE
∼ t(n− p) and êi√

(1−hii)MSE(i)
∼ t(n− 1− p)

are studentized residual and studentized deleted residual.

Comment: Standardizing yi − ŷi, yi − ŷi(i) and ŷi − ŷi(i) lead to the same
êi√

(1−hii)σ2
∼ N(0, 12) with two studentized forms: Studentized residual and Stu-

dentized deleted residual.
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(3) DFFITS

Define DFFITSi =
ŷi−ŷi(i)√
hii MSE(i)

.

Then DFFITSi =
√

hii
MSE(i)

êi
1−hii

=
√

hii
MSE(i)

êi(i) =
√

hii
1−hii

t(i).

So DFFITSi ∼
√

hii
1−hii

t(n− 1− p)

By the rule of thumb, if |DFFITSi| > 2
√

p
n , then the ith observation is an outlier.

Ex1: Express DFFITSi through êi, êi(i) and t(i).

DFFITSi =
√

hii
MSE(i)

êi
1−hii

=
√

hii
MSE(i)

êi(i) =
√

hii
1−hii

t(i).

3. Cook’s D

(1) Squared norm of difference of fitted vectors

∥ŷ − ŷ(i)∥2 =
∑n

j=1

(
ŷj − ŷj(i)

)2
.

(2) Cook’s D

Define Di =
∥ŷ−ŷ(i)∥2
pMSE

(3) Appication
Large Di indicates that the ith observation is an outlier.
By the rule of thumb, the cut-off value for Di is

4
n .

Ex : SAS

proc reg;

model y=x1 x2;

output out=b P=P R=R H=H STUDENT=STUDENT

PRESS=PRESS RSTUDENT=RSTUDENT

DFFITS=DFFITS COOKD=COOKD;

run;

proc print;

run;
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L27 Multicollinearity

1. Multicollinearity

(1) An assumption
Based on sample y ∼ N(Xβ, σ2In) from a regression model, β can be estimated by its
MLE and LSE β̂ = (X ′X)−1X ′y ∼ N

(
β, σ2(X ′X)−1

)
. To get this estimator there is an

underlying assumption: X ′X is non-singular. This assumption has many different but
equivalent forms. For example

(i) The columns of X ∈ Rp are linearly independent;
(ii) No column of X is a linear combination of others;
(iii) |X ′X| > 0.

(2) Multicollinearity

There is multicollinearity in X
def⇐⇒ The columns of X are almost linearly dependent
⇐⇒ One column of X is almost a LC of others
⇐⇒ |X ′X| > 0 is almost 0.

Let X ′X = QΛQ′ be the eigenvalue decomposition of X ′X where the columns of Q are
eigenvectors of X ′X, Q is an orthogonal matrix (Q′ = Q−1); Λ = diag(λ1, ..., λp), λi > 0,
i = 1, ..., p, are eigenvalues of X ′X. Because |X ′X| = λ1 · · ·λp, the multicollinearity is
reflected as the values of λi > 0 close to 0.

(3) Consequence of multicollinearity
If there is multicollinearity in X, then the total variance in β̂ ∼ N(0, σ2(X ′X)−1),∑p

i=1 var(β̂i) = tr
(
Cov(β̂)

)
= tr[σ2(X ′X)−1] = σ2tr[(QΛQ′)−1]

= σ2tr(QΛ−1Q′) = σ2tr(Λ−1) = σ2
(

1
λ1

+ · · ·+ 1
λp

)
will be vary large. So even though β̂ is an unbiased estimator, but it is not stable.

2. Detecting multicollinearity

(1) Sample correlation coefficient method

proc corr;

var x1 x2 x3;

run;

calculates and presents sample correlation coefficient matrix

 1 r12 r13
r21 1 r23
r31 r32 1

. Because

|rij | ≤ 1 and |rij | = 1 ⇐⇒ xi = axj + b, the value of |rij | close to 1 indicates that xi and
xj are almost correlated consequently there is multicollinearity in X.

(2) Variance inflation factor method
Columns of X are almost linearly dependent if and only if one column, say xi, is almost a
linear combination of others. Thus regression model xi = β0+

∑
j ̸=i βjxj+ϵ will produce

the coefficient of determination R2
i will value close to 1. Consequently VIFi = 1

1−R2
i

called the variance inflation factor will also have large value.
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proc reg;

model y=x1 x2 x3/vif;

run;

calculates and presents VIFi, i = 1, 2, 3. If one VIFi > 2.5, then we conclude the
problem of multicollinearity in X.

3. Ridge regression: A remedy

(1) Ridge regression
With eigenvalue decomposition X ′X = QΛQ′, the LSE and MLE of β is

β̂ = (X ′X)−1X ′y = (QΛQ′)−1X ′y.

Small values of λi > 0 in Λ = diag(λ1, ..., λp) caused multicollinearity. An naive and
intuitive idea is to add K = diag(k1, ..., kp) where ki > 0 for all i to Λ to have a new

estimator β̂(K) = [Q(Λ +K)Q′]−1X ′y.
The diagonal elements of Λ form the ridge of Λ, the proposed approach elevates the ridge
and hence is called a ridge regression.

(2) Compare performance of estimators
Let η̂ be an estimator for η ∈ Rk. Then E∥η̂ − η∥2 is the mean squared error. When
comparing two estimators, the one with smaller mean squared error is the better one.

E∥η̂ − η∥2 = E[(η̂ − η)′(η̂ − η)]
= E {[η̂ − E(η̂) + E(η̂)− η]′[η̂ − E(η̂) + E(η̂)− η]′}
= E {[η̂ − E(η̂)]′[η̂ − E(η̂)]}+ ∥E(η̂)− β∥2
=

∑k
i=1 var(η̂i) + ∥E(η̂)− β∥2 = Toal variance in η̂ + (Bias)2.

(3) Performance of β̂(K)

(i) Ridge estimator is a biased estimator

E[β̂(K)] = E
{
[Q(Λ +K)Q′]−1X ′y

}
̸= E[(QΛQ′)−1X ′y] = E[(X ′X)−1X ′y] = (X ′X)−1X ′Xβ = β.

(ii) Ridge estimator reduces the total variance∑
i var[β̂i(K)] = tr[Cov(β̂(K))]

= tr{σ2[Q(Λ +K)−1Q′]−1X ′X[Q(Λ +K)−1Q′]}
= σ2tr[(Λ +K)−1Λ(Λ +K)−1] = σ2

∑
i

λi
(λi+ki)2

< σ2
∑

i
1
λi

=
∑

i var(β̂i)

(iii) Optimization
It has been shown that there are ki, k = 1, ..., p, such the mean squared error of ridge
estimator is less than that of MLE of β. However these ki depend on parameters
and must be estimated.
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