
L24 Backward elimination and stepwise

1. Backward elimination

proc reg;

model y=x1 x2 x3/selection=Backward SLSTAY=0.1;

run;

(1) The process
The process produces at most 4 models: one with all 3 predictors, one with 2 predictors,
one with 1 predictor and one without any predictors.
It starts with the model with all 3 predictors. SAS displays its R2, Cp, ANOVA table
and Parameter table with p-values for testing the zero values of each coefficients of
predictors in the model. The variable with the largest p-value¿0.1 is eliminated.
SAS then displays R2, Cp, ANOVA table, and parameter table for the model with 2
predictors. Again, the predictor with the largest p-value¿0.1 for testing zero value of its
coefficient is eliminated. ....
The process stops if all predictors are eliminated or if all predictors in the model produced
p-value¡0.1.

(2) Abbreviation and defaul
Backward, SLSTAY can be abbreviated as B and SLS.
The default value for SLSTAY is 0.1.

(3) Order of elimination
At one time there are k predictors in the model, to eliminate a predictor k tests will be
performed in the same full model with k different reduced models.

The largest p-value ⇐⇒ The largest P (F (1, n− p) > Fob)

⇐⇒ The smallest Fob =
SSEr−SSE

MSE = SSM−SSMr
SSTO−SSM (n− p) = R2−R2

r
1−R2 (n− p)

⇐⇒ The largest R2
r

Thus in each elimination step the largest R2 criterion is used in a specified candidate
model pool.

Comment: In forward selection, at one time there are k predictors remaining in the
predictor pool. To select a new predictor k tests will be performed in k differ-
ent full models with a common reduced model. The predictor with smallest p-
value<SLENTRY is selected.

The smallest p-value ⇐⇒ The smallest P (F (1, n− p) > Fob)

⇐⇒ The largest Fob =
SSEr−SSE

MSE = SSM−SSMr
SSTO−SSE (n− p) = R2−R2

r
1−R2 (n− p)

⇐⇒ The largest R2

Thus in each selection step the largest R2 criterion is used in a specified candidate
model pool.

2. Stepwise

proc reg;

model y=x1 x2 x3/selection=Stepwise SLENTRY=0.10 SLSTSAY=0.10;

run;
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(1) The process The main scheme is forward selection. But after each selection, the process
shifts to backward elimination mode. Regardless the result of the elimination the process
shifts back to forward selection.
The process stops if no predictors in the model can be eliminated, and no predictors still
in the pool can be selected.

(2) An example

proc reg;

model y=x1 x2 x3/selection=Stepwise SLENTRY=0.10 SLSTSAY=0.10;

run;

Stepwise Selection: Step 1

Variable x2 Entered: R-Square = 0.9433 and C(p) = 18.6298

........

-----------------------------------------------------------------------------------------

Stepwise Selection: Step 2

Variable x3 Entered: R-Square = 0.9821 and C(p) = 5.1564

........

------------------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

No other variable met the 0.1000 significance level for entry into the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model

Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 x2 1 0.9433 0.9433 18.6298 99.83 <.0001

2 x3 2 0.0388 0.9821 5.1564 10.81 0.0218

3. Other operations on variables

(1) Creating more predictors
With x1 and x2 one can create x3 = x21, x4 = x22, x5 = x1 ∗ x2,....

(2) Transformation of response variable
In stead of using original y as response, one can use

√
y, 1

y , ln y,....

(3) Check model adequacy
Note that y = Xβ + ϵ =⇒ y −Xβ = ϵ ∼ (0, σ2I).
Thus the residual e = y −Xβ̂ = y − ŷ should behave similar to N(0, σ2In).
If the histogram of the residuals is bell-shaped and symmetric, then it is the indication
of adequacy of the model.
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L25 Influential observations: outliers

1. Influential observations: outlers

An observation located far away from where it should be is called an outlier. Outlier has
greater influence on the outcome of statistical inference. So we need to identify outliers,
Investigate the conditions under which the observation was taken with the intention of deleting
the outlier to cancel the influence of the observations observed under abnormal conditions.

2. Residuals and studentized residuals

(1) Residual comparison method
Residual vector ê = y − ŷ = y − Xβ̂ should behave similar to error vector
ϵ = y − E(y) = y −Xβ ∼ N(0, σ2In).
If |êi| is far greater than others, then it is an indication that the ith observation is an
outlier.

(2) Studentized residual method
ê = y − ŷ = y −Xβ̂ = y −Hy = (I −H)Y ∼ N(0, (I −H)σ2). So

êi ∼ N(0, (1− hii)σ
2)

where σ2
êi
= (1− hii)σ

2 is estimated by s2êi = (1− hii)MSE. It can be shown that

ti =
êi
sêi

=
êi√

(1− hii)MSE
∼ t(n− p).

This ti is the studentized residual and hii is the leverage for the ith observation.
Based on the probability P (t(n − p) > |ti|), we know how rare is for ti at its location.
Conventionally the ith observation is an outlier if |ti| > 2.5.

Ex1: SAS can create and store P (ŷ), R (ê), Student (Studentized residual) and H (leverage);
display them and do plot.

data a;

infile "D:\Example.txt";

input y x1 x2;

proc reg;

model y=x1 x2;

output out=a P=yhat R=Residual STUDENT=Studebt H=leverage;

run;

proc print;

run;

proc plot;

plot Student*y;

plot Studebt*yhat;

run;
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3. Deleted residuals and studentized deleted resuduals

(1) Deleted residuals
In êi = yi − ŷi, ŷi is obtained with the presence of the ith observation. To get the ith
residual without the influence of the ith observation. We estimate E(yi) with data y(i)
and X(i), the original y and X with the ith row deleted. The resulted estimated E(yi) is
denoted as ŷi(i) and the residual yi− ŷi(i) is called the ith deleted residual and is denoted
as êi(i).

(2) Formula and usage
It can be shown that

êi(i) =
êi

1− hii

If |êi(i)| is far greater than others, then the ith observation is an outlier.

(3) Studentized deleted residual

êi ∼ N(0, (1− hii)σ
2) =⇒ êi(i) =

êi
1−hii

∼ N
(
0, σ2

1−hii

)
.

Here the variance of êi(i), σ2
êi(i)

= σ2

1−hii
is estimated by its unbiased estimator

s2êi(i) =
MSE(i)

1−hii
where MSE(i) is the MSE in the model without the original ith ob-

servation. Then

t(i) =
êi(i)

sêi(i)
=

êi√
(1− hii)MSE(i)

∼ t(n− 1− p)

is the ith studentized deleted residual.
Conventionally if |t(i)| > 2.5, then the ith observation is an outlier.

Ex2: In SAS deleted residual is called PRESS and studentized deleted residul is called
RSTUDENT.

proc reg;

model y=x;

output out=a R=Resi STUDENT=StuResi H=H PRESS=DelResi RSTUDENT=StuDelRes;

run;

proc print; run;

data c contains 14 observations, data a contains the first 13 observations.

Obs x y Resi StuResi H DelResi StuDelRes

1 0 0.8 0.10893 0.16432 0.23214 0.14186 0.1575

2 1 1.2 0.00357 0.00510 0.14286 0.00417 0.0049

3 2 1.6 -0.10179 -0.14099 0.08929 -0.11176 -0.1351

4 3 2.0 -0.20714 -0.28415 0.07143 -0.22308 -0.2730

5 4 2.2 -0.51250 -0.70989 0.08929 -0.56275 -0.6944

6 5 2.7 -0.51786 -0.73938 0.14286 -0.60417 -0.7246

7 5 2.6 -0.61786 -0.88216 0.14286 -0.72083 -0.8734

8 4 2.4 -0.31250 -0.43286 0.08929 -0.34314 -0.4177

9 3 2.1 -0.10714 -0.14697 0.07143 -0.11538 -0.1408

10 2 1.7 -0.00179 -0.00247 0.08929 -0.00196 -0.0024

11 1 1.4 0.20357 0.29065 0.14286 0.23750 0.2793

12 0 1.1 0.40893 0.61687 0.23214 0.53256 0.6002

13 6 3.1 -0.62321 -0.94012 0.23214 -0.81163 -0.9352

14 6 6.0 2.27679 3.43453 0.23214 2.96512 25.2209

Based on t14 = 3.43453 and t(14) = 25.2209, the 14th observation is an outlier.
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