
L22 Model selection

1. R2-criterion for selecting k predictors

(1) Selecting k predictors
Variables y and x1, ..., xm are available. We need to select k (specified) predictors in the
pool of x1, ..., xn to form a “best” regression model with/without intercept (specified).
Consider all models of k predictors. There are Ck

n = n!
k!(n−k)! such models. Since SSM is

the variation in y explained by the model, by intuition we select one with largest SSM.
We call this criterion largest SSM criterion.

(2) Equivalent criteria
Suppose A and B are two models with k predictors. Then

SSMA ≥ SSMB ⇔ MSMA ≥ MSMB

⇕ ⇕
SSEA ≤ SSEB ⇔ MSEA ≤ MSEB

⇒ FA ≥ FB ⇔ pA ≤ pB

⇕
(
√
MSE)A ≤ (

√
MSE)B ⇔ R2

A ≥ R2
B

⇕ ⇕
(
√
MSE)A
y × 100 ≤ (

√
MSE)B

y × 100 (adj −R2)A ≥ (adj −R2)B

Thus the largest SSM criterion, the largest MSM criterion, the smallest SSE criterion,
the smallest MSE criterion, the largest F criterion, the smallest p-value criterion, the
smallest Root of MSE criterion, the smallest coefficient of variation criterion, the largest
R2 criterion and the largest Adj-R2 criterion are all equivalent.

(3) Tool
proc reg; model y=x1 x2 x3/selection=RSQUARE; run;

produces R2 for all 23 − 1 = 7 models with intercept.
proc reg; model y=x1 x2 x3/noint selection=RSQUARE; run;

produces R2 for all 23 − 1 = 7 models without intercept.

Ex1: Implementation with SAS
Suppose we need two predictors to form a regression model for y in a pool of 6 predictors.

proc reg;

model y=x1 x2 x3 x4 x5 x6/selection=RSQUARE;

run;

Number in

Model R-Square Variables in Model

1 0.9987 x6

1 0.9987 x2

1 0.0200 x3

1 0.0182 x1

1 0.0143 x5

1 0.0112 x4

-------------------------------------------

......

-------------------------------------------

6 0.9998 x1 x2 x3 x4 x5 x6
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So the best model is y = β0 + β1x1 + β2x6 + ϵ.

2. Adj-R2 criterion for selecting a best group of predictors

(1) Selecting a group of predictors
Variables y and x1, ..., xm are available. We need to select a group of predictors to form
a “best” regression model with/without intercept (specified).
Because adding new predictors into the model increases SSM, the largest SSM criterion
will always ends up with selecting all available predictors. Also because the models with
different number of predictors are compared, So the largest SSM criterion and the largest
MSM criterion are no longer equivalent.

(2) MSE and equivalent criteria
In a model MSE is the unbiased estimator for σ2, the variance of random error. We may
select the model with smallest MSE. For two models A and B,

MSEA ≤ MSEB ⇐⇒ Adj-R2
A ≥ Adj-R2

B

⇕
(
√
MSE)A ≤ (

√
MSE)B

⇕
(
√
MSE)A
y × 100 ≤ (

√
MSE)B

y × 100

Thus the smallest MSE criterion, the smallest Root of MSE criterion, the smallest coef-
ficient of variation criterion and the largest Adj-R2 criterion are all equivalent.

(3) Tool
proc reg; model y=x1 x2 x3/selection=ADJRSQ; run;

produces Adj-R2 for all 23 − 1 = 7 models with intercept.
proc reg; model y=x1 x2 x3/noint selection=ADFRSQ; run;

produces ADJ-R2 for all 23 − 1 = 7 models without intercept.

Ex2: Implementation with SAS

proc reg;

model y=x1 x2 x3 x4 x5 x6/selection=ADJRSQ;

run;

Number in Adjusted

Model R-Square R-Square Variables in Model

3 0.9942 0.9943 x1 x2 x6

4 0.9941 0.9944 x1 x2 x4 x6

4 0.9941 0.9943 x1 x2 x3 x6

4 0.9941 0.9943 x1 x2 x5 x6

5 0.9941 0.9944 x1 x2 x3 x4 x6

....

1 -.0005 0.0096 x3

The best model is y = β0 + β1x1 + β2x2 + β3x6 + ϵ.

Caution: Adj-R2 could be a negative number.
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3. Cp-criterion

(1) Mallows Cp-criterion
Statistician Colin Mallows proposed Cp-criterion. In implementation Cp is calculated
for each model and the model with smallest Cp is selected.

Ex3: Implementation with SAS.

proc reg;

model y=x1 x2 x3 x4 x5 x6/selection=Cp;

run;

Number in

Model C(p) R-Square Variables in Model

2 0.3948 1.0000 x1 x6

3 1.7666 1.0000 x1 x3 x6

3 2.0336 1.0000 x1 x4 x6

3 2.0431 1.0000 x1 x5 x6

3 2.2593 1.0000 x1 x2 x6

...

1 4456522 0.0003 x5

So the model selected by Cp criterion is y = β0 + β1x1 + β2x6 + ϵ.

(2) Formula

Cp = 2p− n+
SSE(p)

MSE
.

Here MSE is from the model with all m predictors. SSE(p) is the model with some
predictors such that the number of components in β is p. Clearly C in Cp is for Criterion
and p is for the number of components in β.

(3) How Cp is defined
y ∼ N(E(y), σ2In).
With selected predictions, ŷ∗ = H∗y = X∗(X

′
∗X∗)

−1X ′
∗y where X∗ ∈ Rn×p.

The error of this model is measured by parameter Γp =
E∥E(y)−ŷ∗∥2

σ2 .
To find the expression for Γp recall: Z ∼ N(µ, Σ) =⇒ E∥Z∥2 = E(Z ′Z) = ∥µ∥2+tr(Σ).
With −ŷ∗ = −H∗y ∼ N(−H∗E(y), σ2H∗),
E(y)− ŷ∗ ∼ N

(
(I −H∗)E(y), σ2H∗

)
=⇒ E∥E(y)− ŷ∗∥2 = ∥(I −H∗)E(y)∥2 + σ2p.

y − ŷ∗ ∼ N
(
(I −H∗)E(y), σ2(I −H∗

)
=⇒ E(SSE∗) = ∥(I −H∗)E(y)∥2 + σ2(n− p).

So E∥E(y)− ŷ∗∥2 = σ2(2p− n) + E(SSE∗) and Γp = 2p− n+ E(SSE∗)
σ2 .

Replace σ2 by its UE MSE and E(SSE∗) by its UE SSE∗ now denoted as SSE(p).
We obtain

Cp = 2p− n+
SSE(p)

MSE
.
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L23 Information criteria and Forward selection

1. AIC, BIC and SBC

(1) The largest maximized likelihood criterion
Over all models with/without intercept (specified),
The largest maximized lielihood criterion

= The lagest
(

1
2πe

)n/2 (
SSE
n

)−n/2
criterion

= The largest
(
SSE
n

)−n/2
criterion

= The smallest − 2 ln
(
SSE
n

)−n/2
criterion

= The smallest n ln SSE
n criterion

= The smallest SSE criterion

.

The largest likelihood criterion is equivalent to the smallest SSE criterion. But adding
new predictors into model always decreases SSE. This criterion will always ends up with
selecting all predictors and thus can not be used for the comparison for models with
different number of predictors.

(2) AIC, BIC and SBC
To create a criterion for comparing models with different number of predictors, consider

r(p) + n ln
SSE(p)

n

where the increasing function r(p) is the penalty for the trend of decreasing SSE(p) from
a model with p components in β.

(i) AIC (Akaike Information Criterion) by Akaike (1974)

AIC = 2p+ n ln
SSE(p)

n . Select the model with smallest AIC.

(ii) BIC (Bayesian Information Criterion) by Sawa (1978)

BIC = 2(p+ 2)q − 2q2 + n ln
SSE(p)

n where q = nMSE
SSE(p)

Select the model with smallest BIC.

(iii) SBC (Schwartz Bayesian Criterion) by Schwartz (1978)

SBC = p lnn+ n ln
SSE(p)

n . Select the model with smallest SBC.

Ex1: Implementation with SAS

proc reg;

model y=x1 x2 x3/selection=ADJRSQ AIC SBC BIC;

run;

Number in Adjusted

Model R-Square R-Square AIC BIC SBC Variables in Model

3 0.8821 0.9116 -4.8012 0.3593 -2.54139 x1 x2 x3

1 0.8472 0.8599 -2.8173 -1.1866 -1.68740 x1

1 0.8450 0.8579 -2.6307 -1.0569 -1.50075 x2

2 0.8431 0.8693 -1.7188 0.1424 -0.02397 x2 x3

2 0.8351 0.8626 -1.0675 0.4983 0.62735 x1 x2

2 0.8333 0.8611 -0.9255 0.5766 0.76932 x1 x3

1 0.8140 0.8295 -0.2617 0.6078 0.86820 x3

Model y = β0+β1x1+β2x2+β3x3+ϵ, the model with all available predictors, is selected
by R2-criterion, adj −R2 criterion, AIC and SBC, but not by BIC.
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2. Forward selection

proc reg;

model y=x1 x2 x3 x4 x5 x6/selection=Forward SLENTRY=0.1;

run;

There are 6 predictors in the pool. We consider models with intercept.

(1) The process
First predictor: In each of 6 models with 1 predictor, test the hypothesis that the coef-
ficient of the predictor is zero. Select one with smallest p-value< 0.1.
Second predictor: With the first predictor in, in each of the 5 models with 2 predictors,
test the hypothesis that the coefficient of the newly joint predictor is zero and select the
one with smallest p-value< 0.1.
Third predictor: With the two predictors in, in each of the 4 models with 3 predictors,
test the hypothesis that the coefficient of the newly joint predictor is zero and select the
one with smallest p-value< 0.1
....
The process stops once all predictors are selected, or when none of the predictors re-
maining can produce ;-value< 0.1.

(2) Comments
The process does go through all models. For example, there are 15 models wihth 2
predictors, but only 5 models are investigated.
For selecting models without intercept use “noint”.
Forward and SLENTRY can be abbreviated as F and SLE. The default value for SLEN-
TRY is 0.5.

Ex2: Implementation with SAS

proc reg;

model y=x1 x2 x3/selection=Forward SLENTRY=0.1;

run;

Forward Selection: Step 1

Variable x2 Entered: R-Square = 0.9433 and C(p) = 18.6298

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 55.53721 55.53721 99.83 <.0001

Error 6 3.33779 0.55630

Corrected Total 7 58.87500

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.76254 0.33799 2.83159 5.09 0.0649

x2 0.54515 0.05456 55.53721 99.83 <.0001

------------------------------------------------------------------------------------------

Forward Selection: Step 2
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Variable x3 Entered: R-Square = 0.9821 and C(p) = 5.1564

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 57.81946 28.90973 136.94 <.0001

Error 5 1.05554 0.21111

Corrected Total 7 58.87500

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.25074 0.25996 0.19639 0.93 0.3791

x2 0.85121 0.09897 15.61697 73.98 0.0004

x3 -0.07388 0.02247 2.28226 10.81 0.0218

------------------------------------------------------------------------------------------

No other variable met the 0.1000 significance level for entry into the model.

Summary of Forward Selection

Variable Number Partial Model

Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 x2 1 0.9433 0.9433 18.6298 99.83 <.0001

2 x3 2 0.0388 0.9821 5.1564 10.81 0.0218
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