L21 Simultaneous confidence intervals

- 1. Confidence intervals for β_i and confidence region for β
 - t-intervals for β_i β_i ± t_{α/2}(n − p)S_{β_i} is a 1 − α C.T. for β_i where S²_{β_i} = MSE [(X'X)⁻¹]_{ii}.

 F-intervals for β_i β_i ± √F_α(1, n − p) S_{β_i} is a 1 − α C.I. for β_i.

 Proof. t_{α/2}(n − p) = √F_α(1, n − p).

 Comment: Both β_i and S_{β_i} are in standard SAS output.
 - (3) *F*-confidence region $\left\{ \beta \in R^p : (\beta - \widehat{\beta})' [MSE \ (X'X)^{-1}]^{-1} (\beta - \widehat{\beta}) < pF_{\alpha}(p, n-p) \right\} \text{ is a } 1 - \alpha \text{ CR for } \beta.$ **Proof.** $\frac{(\beta - \widehat{\beta})' (X'X) (\beta - \widehat{\beta})/p}{MSE} < F_{\alpha}(p, n-p)$ $\iff (\beta - \widehat{\beta})' [MSE \ (X'X)^{-1}]^{-1} (\beta - \widehat{\beta}) < pF_{\alpha}(p, n-p).$
- 2. Simultaneous CIs for β_i , i = 1, ..., k
 - (1) An inequality in probability Let A_i , i = 1, ..., k, be random events with $P(A_i) \ge 1 - \frac{\alpha}{k}$. Then $P(\cap_i A_i) \ge 1 - \alpha$. Proof. $P(\cap_i A_i) = 1 - P((\cap_i A_i)^c) = 1 - P(\cup_i A_i^c)$ $\ge 1 - \sum_i P(A_i^c) = 1 - \sum_i [1 - P(A_i)] = 1 - k + \sum_i P(A_i)$ $\ge 1 - k + \sum_i (1 - \frac{\alpha}{k}) = 1 - k + k - \alpha = 1 - \alpha$.

(2) Bonferroni simultaneous confidence intervals Suppose A_i is a $1 - \frac{\alpha}{k}$ confidence interval for θ_i , i = 1, ..., k. Then, $A_1, ..., A_k$ are simultaneous confidence intervals for $\theta_1, ..., \theta_k$ with overall confidence coefficient $1 - \alpha$

Proof. $P(A_i) \ge 1 - \frac{\alpha}{k}, i = 1, ..., k \Longrightarrow P(A_1 \cap \cdots \cap A_k) \ge 1 - \alpha.$

Ex1: For $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$, construct simultaneous CIs for β_i , i = 0, 1, 2, 3 with overall confidence coefficient 90%

 $\begin{array}{l} 1-\alpha=0.90 \Longrightarrow \alpha=0.1 \Longrightarrow \frac{\alpha}{4}=0.025 \Longrightarrow 1-\frac{\alpha}{4}=0.975.\\ \text{So one can construct CIs one by one, each one has CC 97.5\%, i.e.,}\\ \widehat{\beta}_i \pm t_{0.0125}(n-p)S_{\widehat{\beta}_i}, i=0, 1, 2, 3. \end{array}$ [proc reg; model y=x1 x2 x3/clb alpha=0.025;

Ex2: proc reg; model y=x1 x2 x3/clb alpha=0.05; run; produces 95% CIs for β_i , i = 0, 1, 2, 3.

Pick two as simultaneous CIs. Find the overall confidence coefficient.

 $\frac{\alpha}{2} = 0.05 \Longrightarrow \alpha = 0.10 \Longrightarrow 1 - \alpha = 0.90.$ So the overall confidence coefficient is 90%

- 3. Scheffe's intervals
 - (1) Extended Cauchy-Schwartz inequality

For $u, v \in \mathbb{R}^p$, $(u'v)^2 \leq (u'u)(v'v)$ is known as Cauchy-Schwartz inequality. With positive definite B, let $u = B^{1/2}x$ and $v = B^{-1/2}y$. Then

$$(x'y)^2 \le (x'Bx)(y'B^{-1}y).$$

This is extended Cauchy-Schwartz inequality. Thus with given c > 0

$$y'B^{-1}y < c \Longrightarrow \frac{(x'y)^2}{x'Bx} < c.$$

(2) Relation of events

With $x = e_i$, $y = \beta - \hat{\beta}$, $B = MSE(X'X)^{-1}$ and $c = pF_{\alpha}(p, n-p)$, $A = \{y'B^{-1}y < c\}$ and $A_i = \{\frac{(x'y)^2}{x'Bx} < c\}$, $i = 1, 2, \dots$ are random events and

$$A \subset A_i \text{ for all } i \Longrightarrow A \subset \cap_i A_i \Longrightarrow P(A) \leq P(\cap_i A_i).$$

(3) Scheffe's intervals for β_i for i = 1, 2, ...Note that $A = \{y'B^{-1}y\} = \{(\beta - \widehat{\beta})'[MSE(X'X)^{-1}]^{-1}(\beta - \widehat{\beta}) < pF_{\alpha}(p, n-p)\}$ with $P(A) = 1 - \alpha$, and

$$\begin{aligned} A_i &= \left\{ \frac{(x'y)^2}{x'Bx} < c \right\} = \left\{ \frac{[e_i'(\beta - \widehat{\beta})]^2}{e_i'MSE(X'X)^{-1}e_i} < pF_\alpha(p, n-p) \right\} \\ &= \left\{ \left(\frac{(\beta_i - \widehat{\beta}_i)^2}{s_{\widehat{\beta}_i}} \right)^2 < pF_\alpha(p, n-p) \right\} = \left\{ \left(\beta_i - \widehat{\beta}_i \right)^2 < pF_\alpha(p, n-p)S_{\widehat{\beta}_i} \right\} \\ &= \left\{ \beta_i \in \widehat{\beta}_i \pm \sqrt{pF_\alpha(p, n-p)} s_{\widehat{\beta}_i} \right\}. \end{aligned}$$

Thus $P(\cap_i A_i) \ge P(A) \ge 1 - \alpha$ implies that $\beta_i \in \widehat{\beta}_i \pm \sqrt{pF_\alpha(p, n-p)} S_{\widehat{\beta}_i}$, i = 1, 2, ..., are simultaneous CIs for β_i , i = 1, 2, ... with overall cc $1 - \alpha$. These intervals are known as Scheffe's intervals.

Ex3: Comparison

By Bonferroni method k simultaneous CIs for β_i , i = 1, ..., k with overall confidence coefficient $1 - \alpha$ are

$$\beta_i \in \widehat{\beta}_i \pm \sqrt{F_{\alpha/k}(1, n-p)} S_{\widehat{\beta}_i}, \ i = 1, ..., k$$

The Scheffe's interval for β_i , i = 1, ..., k with overall confidence coefficient $1 - \alpha$ are

$$\beta_i \in \widehat{\beta}_i \pm \sqrt{pF_\alpha(p, n-p)} S_{\widehat{\beta}_i}, \ \mathbf{i} = 1, \dots, k$$

Comment: Scheffe's intervals are wider. Bonferroni intervals are k specific. But Scheffe's intervals are for all k = 1, 2, ...