L17 Regression with dummy variables

1. Dummy variables

(1)

Dummy variables
Values of a dummy variable specify categories even if the values are numerical. For
example a data set contains three variables, y: calculus scores, x: algebra scores and z:

1 School A
schools. Here z =< 2 School B is a dummy variable with numerical values.
3 School C

Problem of interests

With a dummy variable there are models for each categories, the inferences on the
ya = Bao + Barx + €

parameters across models might be of interest. For example for < yp = Bpo + Bp1x + €
yc = Peo + Porz + €

we want to test Ho : Ba0 = Bco; Ho @ Ba1 = Bp1; Ho: E(ya) = E(yc).

Difficulties

We only have method on testing Hg : AS = b where 3 is a parameter vector from one

model. Thus the models must be merged into one and the testing must be carried out

in this combined model.

2. Directly use a dummy variable with two numerical values

(1)

3)

(4)

Problem
1 School A

Data: y calculus score, z algebra score, z = { 9 School B °

Models: { ya = Pao + Barx + €

yp = Bpo + Pp1x + €

Inferences: Testing Hg : BAO = BB(); H() : BAl = 531; H() : E(yA) = E(yB)
A combined model

_ : : ya = (Bo+B2)+ (B1+ B3)r+ €
y = Bo + Bix + Boz + B3xz + € is equivalent to { ur = (o + 262) + (B + 285z + €

Thus Hy : Bao = Bpo <= Po+B2=00+2B2 = P2=0
Hy: a1 =Bp1+— B1+P3=p1+283 <= B3=0

Hy : E(yA> :E(yB) <= fPy=0and f3=0

So in the combined model y = By + S1x + B2z + B3xz + €, test
Ho: B2 =0; Hy: 3 =0; and Ho: B2 = 83 = 0.

Implementation

data a; infile "D\Ex.txt";
input y x z; Xz=xX*z;
proc reg; model y=x z xz/noprint;
test z=0; test xz=0; test z=0, xz=0; run;

Presentation

Hy: E(ya) = E(yp) versus H, : E(ya) # E(yp)

LI _ MSH
Test statistic: F' = e

p-value: P(F(2,n—4) > Fy)

1



3. Indicator variables

(1)

A dummy variable

that specifies more than two classes with numerical values can not be directly used. For

example with y, z and z in (1) of 1,
ya=Po+ P2+ Pz +e

y=0o+px+ Pz +te= ¢ yp=Po+2B02+ iz +e . So Bag = Ppo <= Bo+ P2 =
yo = Po+ 302+ Pz +e

Bo + 2p2 <= B2 = 0 <= Bao = Bpo = Bco-

Indicator variables

A dummy variable with ¢ categories defined ¢ indicator variables. For example

z | 1A IB IC
A1 0 0
B0 1 0
c|{o 0 1
B|0O 1 0
A1 0 0

Use indicators

t—1 indicator variables can identify ¢ classes. So using ¢ — 1 indicators one can construct
a combined model from ¢ models from ¢ classes. For the data, models and problems in
1, let TA, IB be the indicators. Then

y= B0+ P1x+ BolA+ B3IB + B4l A x + B51IB x + € is equivalent to

ya = (Bo+ B2) + (b1 + Ba)r + €
yp = (Bo+ B3) + (B1+ Bs)x + ¢
yo = Po+ 1z + ¢

Therefore  Hy: Bag = Bco < Bo+ B2 =Py <= P2=0
Hy: Bami=0Bp1<= b1+ p1=01+ 05 < p1=05
Hy: E(ya) = E(yc) <= Bao = Pco and fa, = Bc1
< Po+P2= P and f1+ s =1 = B2 =0and B4 =0.
Implementation

Assume z = A, B, C for schools A, B and C.

data a; infile "D:\Ex.txt";
input y x z $;
if z="A" then do; IA=1; IB=0; end;
if z="B" then do; IA=0; IB=1; end;
if z="C" then do; IA=0; IB=0; end;
IAx=IA*x; IBx=IB&x;
proc reg;
model y=x IA IB IAx IBx/noprint;
test IA; test IAx=IBx; test IA=0, IAx=0;
run;




L18 Polynomial regression and ANOVA model

1. Polynomial regression

(1) Polynomial regression
With one response variable y and one predictor x, one can have two possible simple
linear regression models

y=pPo+ Pix+eand y =Pz +e.

But one can also create more predictors z2, z3,..,2% from = to have

y=Bo+ Pz + Box® + -+ Bra® +eand y = Brag + - + Brat + e

called polynomial regression since the regression function is a polynomial of x.

Comment: Polynomial regression model is still a linear regression since the regression
function is still a linear function of unknown parameter vector .

(2) Fit data to polynomial regression model

To fit data to a polynomial regression z2, z3, ..., z*

must be created from z first.

data a;
infile "C:\Example.txt";
input y x1;
x2=x1%*x1; x3=x2%x1;
proc reg;
model y=x1 x2 x3;
run;

x[1 10 0 -1
y[1 2 3 4 5 0
significant improvement from the model y = By + 1 + €?
In model y = By + 1z + Box? + € test Hy: Bo = 0.

Ex1: With data does the model y = By + S1x + Box? + € shows a

Ho: B2 =0 versus H, : Bo £ 0

Test Statistic: ¢t = 5’?%
B2
p-value: 2P(t(n — 3) > |te))

t = —0.60, p-value: 2P(¢(3) > 0.6) = 0.5908
Fail to reject Hy
Data do not show a significant improvement.

2. One-way ANOVA model

(1) One-way ANOVA model
One-way ANOVA model specifies ¢ normal populations N (u;, o) with possible different



means (1, ..., g and a common variance 02. These ¢ populations are responses to ¢

treatments by g levels of a factor. The model can be expressed as
Y= plx)+ e e ~ N0, 0?)

where p(x) is an unspecified function of x, and x assumes ¢ different values. Thus pu(z)
assumes unknown values fi1, ..., fiq-

Samples in ANOVA model

y = (y1,....,Yn)" is observed vector of responses in ANOVA. For this y, let J € R"*4
with the jth column being the indicator for the jth population, i.e.,

- 0 if y; is not from the jth population
Y1 if y; is from the jth popualtion

and g = ({1, ..., fq)’. Then
y~N (Ju, o*L).

SSPE
y ~ N(Ju, 0%I,), a linear model, has SSE called the SS of Pure Errors (SSPE).
SSP = ¢/[I — J(J'J)~'J'|y with DF = rank[I — J(J'J)"'J'] = n — ¢, and

n/2
max|[L(u, 0%) : p, 0?] = ( n ) / SSPE"™?,

2me

3. Computation for SSPE;, ANOVA model SSE

(1)

Hand computation
Suppose random sample i1, ..., Yin, is from N(u;, 0?) with size n;, mean 7; and
CSS; = Z?;l(yij —%;)%. Then SSE = CSS; +---+ CSS,.
Ex2: y in Ex1 are from 3 populations distinguished by the values 1, 0 and —1 of x.
SSPE = (CSS1+CSSy+CSS_4
= [(1-1)?+2-1)2+(0—-1)*+[B-35)2+(4—35)%+ (5—5)?
= 2405+0-—2.5.
SAS
Suppose variable x assumes different values indicating different populations correspond-
ing value of y is from. Then

proc anova; class x; model y=x; run;
produces ANOVA table on which SSE=SSPE with DF are displayed.
Ex3: For data in Ex1

data a;

input y x QQ;

datalines;

112130405-101
proc anova;

class x;

model y=x;

run;

produced SSE=2.5 and DF=6-3=3.




