Part III: Multiple linear regression

L15 Type II SS

- 1. Review: Partial F-test
 - (1) Scheme For model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$

 $\begin{array}{c|c} H_0: \ \beta_1 = \beta_3 = 0 \text{ vs } H_a: \ \beta_1 \neq 0 \text{ or } \beta_3 \neq 0 \\ \text{Test Statistic: } F = \frac{MSH}{MSE} \\ \text{Reject } H_0 \text{ if } F > F_{\alpha}(2, n-4) & | \quad \text{P-value: } P(F(2, n-4) > F_{ob}) \end{array}$

(2) ANOVA

Source	SS	DF	MS	F	Pr > F
Hypothesis	SSH	2	MSH	MSH/MSE	$P(F(2, n-4) > F_{ob})$
Error	SSE	n- 4	MSE		
Reduced model Error	SSE_r	n-2			

proc reg; model y=x1 x2 x3; run;	\implies	SSE, $DF=n-4$, MSE
proc reg; model y=x2; run;	\implies	$SSE_r, DF=n-2$

 $SSH = SSE_r - SSE$, q = (n-2) - (n-4) = 2 of parameters in H_0 .

(3) SAS

can produce ANOVA table for the test without fitting two models

			pro	c reg; model y=x1 test x1=0, run;	x2 x3; x3=0;	
		MS	DF	F	Pr > 1	F
\Longrightarrow	Numerator	MSH	2	MSH/MSE	P(F(2, n-4))	$() > F_{ob})$
	Denominator	MSE	n-4			

2. Inference on β_i

Consider the model in (1) of 1.

(1) t-tests

Consider lower-sided H_a .

$$\begin{array}{l} H_0: \ \beta_2 \geq 3 \text{ versus } H_a: \ \beta_2 < 3 \\ \text{Test statistic: } t = \frac{\widehat{\beta}_2 - 3}{S_{\widehat{\beta}_2}} \\ \text{Reject } H_0 \text{ if } t < -t_{\alpha}(n-4) \quad | \quad \text{P-value: } P(t(n-4) < t_{ob}) \end{array}$$

(2) t-intervals

Consider lower-sided CI.

$$\left(-\infty, \hat{\beta}_2 + t_{0.05}(n-4)S_{\hat{\beta}_2}\right)$$
 is a 95% lower-sided CI for β_2

(3) Tool

proc reg; model y=x1 x2 x3/clb alpha=0.10; run;

$$\begin{array}{c|c|c} \beta_i & \widehat{\beta}_i & S_{\widehat{\beta}_i} & t = \frac{\widehat{\beta}_i}{S_{\widehat{\beta}_i}} & 2P(t(n-p) > |t_{ob}|) & \mathcal{L} & \mathcal{U} \\ \hline \beta_0 & \widehat{\beta}_0 & S_{\widehat{\beta}_0} & t = \frac{\widehat{\beta}_0}{S_{\widehat{\beta}_0}} & 2P(t(n-p) > |t_{ob}|) & L_0 & U_0 \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_3 & \widehat{\beta}_3 & S_{\widehat{\beta}_3} & t = \frac{\widehat{\beta}_3}{S_{\widehat{\beta}_3}} & 2P(t(n-p) > |t_{ob}|) & L_3 & U_3 \end{array}$$

3. Type II SS

Consider the model in (1) of 1.

(1) Test schemes

$$\begin{array}{l} H_0: \ \beta_2 = 0 \ \text{versus} \ H_a: \ \beta_2 \neq 0 \\ \text{Test Statistic:} \ F = \frac{SSH}{MSE} \\ \text{Reject} \ H_0 \ \text{if} \ F > F_\alpha(1, \, n-4) \ \mid \ p\text{-value:} \ P(F(1, \, n-4) > F_{ob}). \end{array}$$

 $SSH = SSE_r - SSE$ can be obtained by fitting data to full and reduced models or SSH, MSE, F and p can be obtained by "test" statements.

(2) Type II SS

will add a column Type II SS to parameter table to include $SSII_0$, $SSII_1$, $SSII_2$ and $SSII_3$.

$$SSII_{2} = SS(\beta_{2}|\beta_{0}, \beta_{1}, \beta_{3}) = SSE(\beta_{0}, \beta_{1}, \beta_{3}) - SSE(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}) \\ = SSE_{r} - SSE = SSH \text{ for } H_{0} : \beta_{2} = 0.$$

Thus in F-test in (1) of 3, $F = \frac{SSII_2}{MSE}$ where both numerator and denominator are in SAS output.

Ex1: For model $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$, $\epsilon \sim N(0, \sigma^2)$

proc reg; model y=x1 x2 x3/noint ss2; run;

produces MSE, n-p, $SSII_1$, $SSII_2$ and $SSII_3$ needed in

 $\begin{array}{l} H_0: \ \beta_i = 0 \ \text{vs} \ H_a: \ \beta_i \neq 0 \\ \text{Test statistic:} \ F = \frac{SSII_i}{MSE} \\ \text{Reject } H_0 \ \text{if} \ F > F_{\alpha}(1, n-p) \quad | \quad \text{p-value:} \ P(F(1, n-p) > F_{ob}) \end{array}$

Ex2: Testing $H_0: \beta_i = 0$ using $F = \frac{SSII_i}{MSE}$ produced p-value: p_i The contribution from X_i is greater or equal to that from $X_j \iff p_i \le p_j$ $\iff \frac{SSII_i}{MSE} \ge \frac{SSII_j}{MSE} \iff SSII_i \ge SSII_j$

L16: General *F*-tests in regression

$$\begin{array}{l} H_0: \ A\beta = b \text{ versus } H_a: \ A\beta \neq b \\ \text{Test statistic: } F = \frac{(A\widehat{\beta}-b)'[A(X'X)^{-1}A']^{-1}(A\widehat{\beta}-b)/q}{MSE} \\ \text{Reject } H_0 \text{ if } F > F_{\alpha}(q, \ n-p) \ | \ \text{P-value: } P(F(q, \ n-p) > F_{ob}) \end{array}$$

1. Hypotheses

(1) q equations

In $H_0: A\beta = b$, A is a $q \times p$ matrix, $\beta \in R^p$ and $b \in R^q$. Thus H_0 gives q equations. $\begin{cases}
a_{11}\beta_0 + \beta_{12}\beta_1 + \dots + a_{1p}\beta_{p-1} &= b_1 \\
\vdots &\vdots &\vdots \\
a_{q1}\beta_0 + a_{q2}\beta_1 + \dots + a_{qp}\beta_{p-1} &= b_q
\end{cases}$

(2) Consistency and linearly independent rows of AIt is assumed that the equations are consistent, i.e., the equations have solutions.It is also assumed that the rows of A are linearly independent.

Ex1: For $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$ with H_0 : $A\beta = b$ where $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$ with linearly dependent rows. If $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, then system is inconsistent; if $b = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, then H_0 is reduced to contain $\beta_1 + 2\beta_2 = 1$ only.

Ex2: $H_0: A\beta = b$ covers all cases we studied so far. For example with model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$,

$$H_0: \ \beta_i = 0 \text{ for all } i = 1, 2, 3 \text{ is } A\beta = b \text{ where } A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } b = 0 \in \mathbb{R}^3.$$
$$H_0: \ \beta_1 = \beta_3 = 0 \text{ is } A\beta = b \text{ with } A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } b = 0 \in \mathbb{R}^2.$$
$$H_0: \ \beta_2 = 0 \text{ is } A\beta = 0 \text{ with } A = (0, 0, 1, 0) \text{ and } b = 0.$$

- 2. Test statistic
 - (1) LRT statistic

Let $SSH = SSE_r - SSE$. Then SSH is an SS with $DF = (DF \text{ of } SSE_r) - (DF \text{ of } SSE) = q$. Let $MSH = \frac{SSH}{q}$ and $F = \frac{MSH}{MSE}$. Then this F is a LRT.

Proof. $\Lambda = \frac{\max[L(\beta, \sigma^2)]}{\max[L(\beta, \sigma^2): H_0]} = \left(\frac{SSE_r}{SSE}\right)^{n/2} = \left(\frac{MSH}{MSE} \cdot \frac{q}{n-p} + 1\right)^{n/2} = \left(F \cdot \frac{q}{n-p} + 1\right)^{n/2}$ is an increasing function of $F = \frac{MSH}{MSE}$. Thus F is a LRT statistic.

(2) A specific form: $F = \frac{(A\hat{\beta}-b)'[A(X'X)^{-1}A']^{-1}(A\hat{\beta}-b)/q}{MSE}$ It can be shown that $SSH = SSE_r - SSE = (A\hat{\beta}-b)'[A(X'X)^{-1}A']^{-1}(A\hat{\beta}-b).$ Thus $F = \frac{(A\hat{\beta}-b)'[A(X'X)^{-1}A']^{-1}(A\hat{\beta}-b)/q}{MSE}$ is a more specific form of F. **Ex2:** H_0 : $\beta_i = 0$ can be written as $e'_i\beta = 0$. Thus

(A
$$\hat{\beta} - b$$
)[A(X'X)⁻¹A']⁻¹(A $\hat{\beta}_i - b$) = $(e'_i \hat{\beta} - 0)[e'_i (X'X)^{-1} e_i]^{-1}(e'_i \hat{\beta} - 0)$
= $\frac{\hat{\beta}_i^2}{e'_i (X'X)^{-1} e_i}$.

With
$$q = 1$$
, $F = \frac{\widehat{\beta}_i^2}{MSE e'_i(X'X)^{-1}e_i} = \left(\frac{\widehat{\beta}_i}{S_{\widehat{\beta}_i}}\right)^2 = t^2$.

- 3. Implementation
 - (1) Full model and reduced model approach For model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$, $\epsilon \sim N(0, \sigma^2)$.

 $\begin{array}{l} H_0: \beta_1 = \beta_3, \ \beta_1 + \beta_3 = 2\beta_2 \\ H_a: \ \text{At least one equation in } H_0 \ \text{is false} \\ \text{Test statistic: } F = \frac{MSH}{MSE} \\ \text{p-value: } P(F(2, n-4) > F_{ob}) \end{array}$

- (i) Statistics from full model proc reg; model y=x1 x2 x3; run; \implies SSE = 97.6579, DF = 8, MSE = 12.2072.
- (ii) Reduced model

 $\begin{aligned} H_0 : \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \beta = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Longleftrightarrow \begin{cases} \beta_0 + 2\beta_1 - \beta_0 = 1 \\ \beta_2 - \beta_3 = 2 \end{cases} \iff \begin{cases} \beta_0 = 1 + \beta_2 - 2\beta_1 \\ \beta_3 = \beta_2 - 2 \end{cases} \\ \text{Model under } H_0 \text{ becomes} \end{aligned}$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

= $(1 + \beta_2 - 2\beta_1) + \beta_1 x_1 + \beta_2 x_2 + (\beta_2 - 2)x_3 + \epsilon$
= $\beta_1 (x_1 - 2) + \beta_2 (x_2 + x_3 + 1) + 1 - 2x_3 + \epsilon$,

i.e., $y + 2x_3 - 1 = \beta_1(x_1 - 2) + \beta_2(x_2 + x_3 + 1) + \epsilon$, $\epsilon \sim N(0, \sigma^2)$. (iii) Statistics from the reduced model

data b; set a;				
ny=y+2*x3-1; nx1=x1-2; nx2=x2+x3+1;				
proc reg;				
<pre>model ny=nx1 nx2/noint;</pre>				
run;				

$$\implies SSE_r = 638.13031, DF = 10$$

(iv) With results from (1) and (3),

Source	DF	\mathbf{SS}	MS	F	р
Hypothesis	2	540.47242	270.23621	22.7314	0.001
Error	8	97.6579	12.20724		
Error (R)	10	638.13031			

(2) Use "test"

]	proc mo te ru	reg; del y=x1 st inter n;	x2 x3 cept=1-	; +x2-2*x1,	x3=x2-2;
DF		MS	Р	р]	
2	270.23	3621	22.7314	0.001]	

Ν	2	270.23621	22.7314	0.00
D	8	12.20724		