L14 t-tests in regression

- 1. t-tests by rejection regions
 - (1) Framework

If
$$\frac{\theta-\theta}{S} \sim t(df)$$
, then

$$\begin{array}{c|c} H_0: \ \theta \leq \theta_0 \text{ vs } H_a: \ \theta > \theta_0 \\ \text{Test statistic: } t = \frac{\widehat{\theta} - \theta_0}{S} \\ \text{Reject } H_0 \text{ if } t > t_\alpha(df) \end{array} \end{array} \begin{array}{c} H_0: \ \theta \geq \theta_0 \text{ vs } H_a: \ \theta < \theta_0 \\ \text{Test statistic: } t = \frac{\widehat{\theta} - \theta_0}{S} \\ \text{Reject } H_0 \text{ if } t > t_\alpha(df) \end{array}$$

$$H_0: \theta = \theta_0 \text{ vs } H_a: \theta \neq \theta_0$$

Test statistic: $t = \frac{\widehat{\theta} - \theta_0}{S}$
Reject H_0 if $t < -t_{\alpha/2}(df)$ or $t > t_{\alpha/2}(df)$

- (2) Comments
 - (i) In the definition of test statistic $t = \frac{\hat{\theta} \theta_0}{S}$, θ_0 is from the hypotheses and $\theta_0 \in H_0$.
 - (ii) Lower-sided/upper-sided/two-sided H_a
 - \iff Lower-sided/upper-sided/two-sided rejection region
 - (iii) $P(t(df) \in \text{Rejection region}) = \alpha$.
- (3) Ex1: Presentation of your test

For $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x + \beta_4 x_4 + \epsilon$, is E(y) an increasing function of x_4 ? Support your conclusion by a test at level 0.05. n = 24

$$\begin{split} H_0: \ \beta_4 &\leq 0 \text{ vs } H_a: \ \beta_0 > 0 \\ \text{Test statistic: } t &= \frac{\widehat{\beta}_4}{S_{\widehat{\beta}_4}} \\ \text{Reject } H_0 \text{ if } t > 1.729 \text{ for } \alpha = 0.05 \\ t_{ob} &= 0.47 \\ \text{Fail to reject } H_0 \\ \text{Data do not show evidence to support that claim} \end{split}$$

- 2. t-tests by p-values
 - (1) Framework

If $\frac{\widehat{\theta}-\theta}{S} \sim t(df)$, then

 $\begin{array}{c|c} H_0: \theta \leq \theta_0 \text{ vs } H_a: \theta > \theta_0 \\ \text{Test statistic: } t = \frac{\widehat{\theta} - \theta_0}{S} \\ \text{p-value: } P(t(df) > t_{0b}) \end{array} \end{array} \qquad \begin{array}{c|c} H_0: \theta \geq \theta_0 \text{ vs } H_a: \theta < \theta_0 \\ \text{Test statistic: } t = \frac{\widehat{\theta} - \theta_0}{S} \\ \text{p-value: } P(t(df) < t_{ob}) \end{array}$

 $H_0: \theta = \theta_0 \text{ vs } H_a: \theta \neq \theta_0$ Test statistic: $t = \frac{\widehat{\theta} - \theta_0}{S}$ p-value: $2P(t(df) > |t_{0b}|)$

- (2) Comments
 - (i) In the definition of test statistic $t = \frac{\theta \theta_0}{S}$, θ_0 is from the hypotheses and $\theta_0 \in H_0$.
 - (ii) Lower-sided/upper-sided/two-sided H_a have
 - Lower-sided/upper-sided/two-sided tails cut off by t_{ob} as p-values
- (3) Ex2: Presentation of your test Do Ex1 using p-values

 $\begin{array}{l} H_0: \ \beta_4 \leq 0 \ \mathrm{vs} \ H_a: \ \beta_0 > 0 \\ \mathrm{Test \ statistic:} \ t = \frac{\widehat{\beta_4}}{S_{\widehat{\beta_4}}} \\ \mathrm{p-value:} \ P(t(19) > t_{ob}) \\ t_{ob} = 0.47, \ \mathrm{p-value:} \ \frac{1}{2} \times 0.64 = 0.32 \\ \mathrm{Fail \ to \ reject} \ H_0 \\ \mathrm{Data \ do \ not \ show \ evidence \ to \ support \ that \ claim } \end{array}$

- 3. Relations of t-test and t-intervals
 - (1) α -level tests and 1α CIs

Fail to reject $H_0: \theta \leq \theta_0$ at $\alpha \iff \theta_0$ is in $1 - \alpha$ upper-sided CI for θ Fail to reject $H_0: \theta \geq \theta_0$ at $\alpha \iff \theta_0$ is in $1 - \alpha$ lower-sided CI for θ Fail to reject $H_0: \theta = \theta_0$ at $\alpha \iff \theta_0$ is in $1 - \alpha$ two-sided CI for θ

Proof. Show the first one.

Fail to reject $H_0: \theta \leq \theta_0$ at $\alpha \iff t = \frac{\widehat{\theta} - \theta_0}{S} < t_\alpha(df) \iff \theta_0 > \widehat{\theta} - t_\alpha(df)S$ $\iff \theta_0 \in (\widehat{\theta} - t_\alpha(df)S, \infty) \iff \theta_0$ is in $1 - \alpha$ upper-sided CI for θ

(2) p-value and smallest confidence coefficient

Test on $H_0: \theta \leq \theta_0$ produced p-value $p \iff$ Fail to reject $H_0: \theta \leq \theta_0$ at $\alpha is in upper-sided CI for <math>\theta$ with cc $1 - \alpha > 1 - p$

Test on $H_0: \theta \ge \theta_0$ produced p-value $p \iff$ Fail to reject $H_0: \theta \le \theta_0$ at $\alpha is in lower-sided CI for <math>\theta$ with cc $1 - \alpha > 1 - p$

Test on $H_0: \theta = \theta_0$ produced p-value $p \iff$ Fail to reject $H_0: \theta = \theta_0$ at $\alpha is in two-sided CI for <math>\theta$ with cc $1 - \alpha > 1 - p$. Interval with smallest cc has smallest width.

Ex3: In Ex1, we fail to reject $H_0: \beta_4 \leq 0$ at $\alpha = 0.05$. So 0 is in a 95% upper-sided CI for β_4 .

Ex4: In Ex2, test on H_0 : $\beta_4 \leq 0$ produced p-value: 0.32.

So 0 is in upper-sided CI for β_4 with smallest confidence coefficient 68%.

Ex5: In Ex2, the p-value for the test on H_0 : $\beta_4 = 0$ is 0.64.

So 0 is in CI for β_4 with smallest confidence coefficient 36%.