Part I: Simple linear regression

L01 Simple linear regression model and least square method

- 1. Two simple linear regression models
 - (1) Simple linear regression with intercept

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim N(0, \ \sigma^2)$$

is a simple linear regression model where the mean of response (dependent variable) is a function of independent variable (predictor) called the regression function,

$$E(y) = \beta_0 + \beta_1 x.$$

It is simple since there is only one predictor, It is linear since $E(y) = (1, x) \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$ is a linear function of unknown parameter vector $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$. The regression function gives a line with intercept β_0 and slope β_1 . Clearly

$$y \sim N(\beta_0 + \beta_1 x, \sigma^2).$$

(2) Simple linear regression without intercept

$$y = \beta x + \epsilon, \ \epsilon \sim N(0, \ \sigma^2) \Longleftrightarrow y \sim N(\beta x, \ \sigma^2)$$

is a simple linear regression model without intercept.

(3) Sample and basic statistics

A sample from a simple liner regression contains n pairs: $(x_i, y_i), i = 1, ..., n$. For the model without intercept, all information are contained in six basic statistics

$$n, \sum x, \sum y, \sum x^2, \sum y^2$$
 and $\sum xy$.

Your calculator should allow you to enter the n pairs and to obtain the six statistics by key-pressing. Information in the model with intercept are contained in another set of six statistics

$$n, \overline{x} = \frac{\sum x}{n}, \overline{y} = \frac{\sum y}{n}, Sxx = \sum (x - \overline{x})^2 = \sum x^2 - \frac{1}{n} (\sum x)^2$$

$$Syy = \sum (y - \overline{y})^2 = \sum y^2 - \frac{1}{n} (\sum y)^2$$

and
$$Sxy = \sum (x - \overline{x})(y - \overline{y}) = \sum xy - \frac{1}{n} (\sum x)(\sum y).$$

Again, you should be able to get these statistics by few key-pressings.

(4) Unified model expression on sample

$$y = X\beta + \epsilon$$
 with $\epsilon \sim N(0, \sigma^2 I) \iff y \sim N(X\beta, \sigma^2 I).$

When $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$ and $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$, the above expression is for the sample from the model with intercept, $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, i = 1, ..., n. But for the sample from the model without intercept, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ and $\beta \in R$.

- 2. Point estimators for β and σ^2 in $y = X\beta + \epsilon \sim N(X\beta, \sigma^2 I)$.
 - (1) Least square estimators for β . For $y = X\beta + \epsilon \sim N(X\beta, \sigma^2 I)$, if $Q(\beta) = \sum_i [y_i - E(y_i)]^2$ is minimized at $\hat{\beta}$, then $\hat{\beta}$ is

a least square estimator (LSE) for β and $Q(\hat{\beta})$ is the sum of squared errors (SSE). By linear algebra or by calculus methods one obtains

$$\widehat{\beta} = (X'X)^{-1}X'y$$
 and $SSE = y'[I_n - X(X'X)^{-1}X']y.$

(2) Maximum likelihood estimators of β and σ^2 The probability density function (pdf) of $y \sim N(X\beta, \sigma^2)$ treated as a function of β and σ^2 is called the likelihood function

$$L(\beta, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[\frac{1}{2\sigma^2}(y - X\beta)'(y - X\beta)\right].$$

If $L(\beta, \sigma^2) \leq L(\widehat{\beta}, \widehat{\sigma}^2)$ for all β and σ^2 , then $\widehat{\beta}$ and $\widehat{\sigma}^2$ are called the maximum likelihood estimators (MLEs) for β and σ^2 .

By linear algebra and calculus methods one obtains

$$\widehat{\beta} = (X'X)^{-1}X'y, \ \widehat{\sigma}^2 = \frac{SSE}{n} \text{ and } AlsoL(\widehat{\beta}, \ \widehat{\sigma}^2) = \left(\frac{n}{2\pi e}\right)^{n/2} (SSE)^{-n/2}.$$

3. Formulas

- (1) For the model with intercept $\hat{\beta}_1 = \frac{Sxy}{Sxx}$ and $\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1$ are LSEs and MLEs for β_1 and β_0 . SSE = $Syy - \frac{(Sxy)^2}{Sxx}$ and $\frac{SSE}{n}$ is MLE for σ^2 . So $E(y(x_0)) = \beta_0 + \beta_1 x_0$ is estimated by $\hat{y}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$
- (2) For the model without intercept $\widehat{\beta} = \frac{\sum xy}{\sum x^2}$ is LSE and MLE for β . $SSE = \sum y^2 - \frac{(\sum xy)^2}{\sum x^2}$ and $\frac{SSE}{n}$ is MLE for σ^2 . So $E(y(x_0)) = \beta x_0$ is estimated by $\widehat{y}(x_0) = \widehat{\beta} x_0$

Ex1: For simple linear regression with intercept and sample $\begin{bmatrix} x: & 1 & 0 & 2 & -1 \\ y: & 2 & 5 & 3 & 4 \end{bmatrix}$ find $\hat{\beta}_1$, $\hat{\beta}_0$, SSE and $\hat{y}(3)$. Six statistics: n = 4, $\bar{x} = 0.5$, $\bar{y} = 3.5$, Sxx = 5, Syy = 5, Sxy = -3. So $\hat{\beta}_1 = \frac{Sxy}{Sxx} = \frac{-3}{5} = -0.6$, $\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1 = 3.5 + 0.5 \times 0.6 = 3.8$ $SSE = Syy - \frac{(Sxy)^2}{Sxx} = 5 - \frac{9}{5} = 3.2$ and $\hat{y}(3) = \hat{\beta}_0 + \hat{\beta}_1(3) = 3.8 - 0.6 \times 3 = 2$.

Ex2: For simple linear regression without intercept and sample in Ex1, find $\hat{\beta}$, SSE and $\hat{y}(3)$. Six statistics: n = 4, $\sum x = 2$, $\sum y = 14$, $\sum x^2 = 6$, $\sum y^2 = 54$, $\sum xy = 4$. So $\hat{\beta} = \frac{\sum xy}{\sum x^2} = 0.6667$ $SSE = \sum y^2 - \frac{(\sum xy)^2}{\sum x^2} = 51.3333$ $\hat{y}(3) = \hat{\beta} \times 3 = 2$.

L02 Distributions of point estimators

- 1. Normal distribution of $\hat{\beta}$
 - (1) $\widehat{\beta} \sim N\left(\beta, \sigma^2(X'X)^{-1}\right)$ By Theorem I: $x \sim N(\mu, \Sigma) \Longrightarrow Ax + b \sim N(A\mu + b, A\Sigma A')$, with $y \sim N\left(X\beta, \sigma^2 I\right)$ and $\widehat{\beta} = (X'X)^{-1}X'y, \ \widehat{\beta} \sim N\left(\beta, \sigma^2(X'X)^{-1}\right)$. Thus $\widehat{\beta}$ is an unbiased estimator (UE) for β since $E(\widehat{\beta}) = \beta$.
 - (2) For simple linear regression with intercept $\widehat{\beta}_{1} = (0, 1)\widehat{\beta} \sim N\left(\beta_{1}, \sigma_{\widehat{\beta}_{1}}^{2}\right) \text{ where } \sigma_{\widehat{\beta}_{1}}^{2} = \sigma^{2} \frac{1}{Sxx}.$ $\widehat{\beta}_{0} = (1, 0)\widehat{\beta} \sim N\left(\beta_{0}, \sigma_{\widehat{\beta}_{0}}^{2}\right) \text{ where } \sigma_{\widehat{\beta}_{0}}^{2} = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{Sxx}\right).$ $\widehat{y}(x_{0}) = \widehat{\beta}_{0} + \widehat{\beta}_{1}x_{0} = (1 x_{0})\widehat{\beta} \sim N\left(\beta_{0} + \beta_{1}x_{0}, \sigma_{\widehat{y}(x_{0})}^{2}\right) \text{ where } \sigma_{\widehat{y}(x_{0})}^{2} = \sigma^{2}\left(\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{Sxx}\right).$
 - (3) For simple linear regression without intercept $\widehat{\beta} \sim N\left(\beta, \sigma_{\widehat{\beta}}^{2}\right)$ where $\sigma_{\widehat{\beta}}^{2} = \sigma^{2} \frac{1}{\sum x^{2}}$. $\widehat{y}(x_{0}) = \widehat{\beta}x_{0} \sim N\left(\beta x_{0}, \sigma_{\widehat{y}(x_{0})}^{2}\right)$ where $\sigma_{\widehat{y}(x_{0})}^{2} = \sigma^{2} \frac{x_{0}^{2}}{\sum x^{2}}$.
- 2. χ^2 -distribution associated with SSE
 - (1) $\frac{SSE}{\sigma^2} \sim \chi^2(n-c)$ where c is the number of columns of X. **Proof.** By Theorem II:

If
$$x \sim N(\mu, \Sigma)$$
 and $A' = A = A\Sigma A$, then $x'Ax \sim \chi^2(\mu'A\mu, r)$
where $r = \operatorname{rank}(A) = \operatorname{rank}(\Sigma^{1/2}A\Sigma^{1/2}) = \operatorname{tr}(\Sigma^{1/2}A\Sigma^{1/2}) = \operatorname{tr}(A\Sigma)$,

with $y \sim N(X\beta, \sigma^2 I)$, $\frac{SSE}{\sigma^2} = y'Ay$ where $A = \frac{I - X(X'X)^{-1}X'}{\sigma^2}$. One can check $A' = A = A(\sigma^2 I) A$, $(X\beta)'A(X\beta) = 0$ and $\operatorname{tr}(A\sigma^2 I) = n - c$. So $\frac{SSE}{\sigma^2} \sim \chi^2(0, n - c) = \chi^2(n - c)$.

Comment: Let $n - c = \operatorname{rank}[I_n - X(X'X)^{-1}X']$ be DF of SSE, and MSE= $\frac{SSE}{n-c}$. Then MSE is an UE for σ^2 since $E\left(\frac{SSE}{\sigma^2}\right) = E(\chi^2(n-c)) = n0c \Longrightarrow E(MSE) = \sigma^2$.

(2) For the model with intercept there is an SS table

ParameterEstimatorStandard Error
$$\beta_0$$
 $\underline{\widehat{\beta}_0}$ $\underline{S_{\widehat{\beta}_0}}$ β_1 $\underline{\widehat{\beta}_1}$ $\underline{S_{\widehat{\beta}_1}}$

(3) For the model without intercept there is an SS table

Parameter	Estimator	Standard Error
eta	$\widehat{\beta}$	$\underline{S_{\widehat{\beta}}}$

- 3. Independence of $\hat{\beta}$ and SSE
 - (1) $\widehat{\beta}$ and SSE are independent

Proof. By Theorem III: $x \sim N(\mu, \Sigma)$. then

$A\Sigma B' = 0$	\Longrightarrow	Ax and Bx are independent
$B' = B$ and $A\Sigma B = 0$	\Longrightarrow	Ax and $x'Bx$ are independent
$A' = A, B' = B$ and $A\Sigma B = 0$	\Longrightarrow	x'Ax and $x'Bx$ are independent,

with $y \sim N(X\beta, \sigma^2 I)$, $\hat{\beta} = Ay$ where $A = (X'X)^{-1}X'$ and SSE = y'By where $B = I_n - X(X'X)^{-1}X'$. But $A\sigma^2 IB = 0$. So $\hat{\beta}$ and SSE are independent.

(2) *t*-distributions in the models

For the model with intercept,

$$\begin{split} & \frac{\widehat{\beta}_0 - \beta_0}{s_{\widehat{\beta}_0}} \sim t(n-2), \quad \frac{\widehat{\beta}_1 - \widehat{\beta}_1}{s_{\widehat{\beta}_1}} \sim t(n-2), \quad \frac{\widehat{y}(x_0) - E(y(x_0))}{s_{\widehat{y}(x_0)}} \sim t(n-2) \\ & \text{For the model with out intercept,} \\ & \frac{\widehat{\beta} - \beta}{s_{\widehat{\beta}}} \sim t(n-1) \quad \frac{\widehat{y}(x_0) - E(y(x_0))}{S_{\widehat{y}(x_0)}} \sim t(n-1). \end{split}$$

Proof. Show the first one. By the normal distribution of $\hat{\beta}_0$, $\frac{\hat{\beta}_0 - \beta_0}{\sigma_{\hat{\beta}_0}} \sim N(0, 1^2)$ which is independent to $\frac{SSE}{\sigma^2} \sim \chi 2(n-2)$. By definition of t-distribution, $\frac{\hat{\beta}_0 - \beta_0}{\sigma_{\hat{\beta}_0}} \div \sqrt{\frac{SSE}{\sigma^2(n-2)}} \sim t(n-2)$, i.e., $\frac{\hat{\beta}_0 - \beta_0}{S_{\hat{\beta}_0}} \sim t(n-2)$.

Ex: A sample for a simple linear regression with intercept produced

$$n = 4, \overline{x} = 0.5, \overline{y} = 3.5, Sxx = 5, Syy = 5, Sxy = -3.$$

Fill out SSE table and Parameter table.