
Part I: Simple linear regression

L01 Simple linear regression model and least square method

1. Two simple linear regression models

(1) Simple linear regression with intercept

y = β0 + β1x+ ϵ, ϵ ∼ N(0, σ2)

is a simple linear regression model where the mean of response (dependent variable) is
a function of independent variable (predictor) called the regression function,

E(y) = β0 + β1x.

It is simple since there is only one predictor, It is linear since E(y) = (1, x)

(
β0
β1

)
is a

linear function of unknown parameter vector β =

(
β0
β1

)
. The regression function gives

a line with intercept β0 and slope β1. Clearly

y ∼ N(β0 + β1x, σ
2).

(2) Simple linear regression without intercept

y = βx+ ϵ, ϵ ∼ N(0, σ2) ⇐⇒ y ∼ N(βx, σ2)

is a simple linear regression model without intercept.

(3) Sample and basic statistics
A sample from a simple liner regression contains n pairs: (xi, yi), i = 1, ..., n. For the
model without intercept, all information are contained in six basic statistics

n,
∑

x,
∑

y,
∑

x2,
∑

y2 and
∑

xy.

Your calculator should allow you to enter the n pairs and to obtain the six statistics by
key-pressing. Information in the model with intercept are contained in another set of
six statistics

n, x =
∑

x
n , y =

∑
y

n , Sxx =
∑

(x− x)2 =
∑

x2 − 1
n(
∑

x)2

Syy =
∑

(y − y)2 =
∑

y2 − 1
n(
∑

y)2

and Sxy =
∑

(x− x)(y − y) =
∑

xy − 1
n(
∑

x)(
∑

y).

Again, you should be able to get these statistics by few key-pressings.

(4) Unified model expression on sample

y = Xβ + ϵ with ϵ ∼ N(0, σ2I) ⇐⇒ y ∼ N(Xβ, σ2I).

When y =

y1
...
yn

, X =

1 x1
...

...
1 xn

 and β =

(
β0
β1

)
, the above expression is for the sample

from the model with intercept, yi ∼ N(β0 + β1xi, σ
2), i = 1, ..., n. But for the sample

from the model without intercept, X =

x1
...
xn

 and β ∈ R.
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2. Point estimators for β and σ2

in y = Xβ + ϵ ∼ N(Xβ, σ2I).

(1) Least square estimators for β.
For y = Xβ + ϵ ∼ N(Xβ, σ2I), if Q(β) =

∑
i[yi − E(yi)]

2 is minimized at β̂, then β̂ is

a least square estimator (LSE) for β and Q(β̂) is the sum of squared errors (SSE).
By linear algebra or by calculus methods one obtains

β̂ = (X ′X)−1X ′y and SSE = y′[In −X(X ′X)−1X ′]y.

(2) Maximum likelihood estimators of β and σ2

The probability density function (pdf) of y ∼ N(Xβ, σ2) treated as a function of β and
σ2 is called the likelihood function

L(β, σ2) =
1

(2πσ2)n/2
exp

[
1

2σ2
(y −Xβ)′(y −Xβ)

]
.

If L(β, σ2) ≤ L(β̂, σ̂2) for all β and σ2, then β̂ and σ̂2 are called the maximum likelihood
estimators (MLEs) for β and σ2.
By linear algebra and calculus methods one obtains

β̂ = (X ′X)−1X ′y, σ̂2 =
SSE

n
and AlsoL(β̂, σ̂2) =

( n

2πe

)n/2
(SSE)−n/2.

3. Formulas

(1) For the model with intercept
β̂1 =

Sxy
Sxx and β̂0 = y − xβ̂1 are LSEs and MLEs for β1 and β0.

SSE = Syy − (Sxy)2

Sxx and SSE
n is MLE for σ2.

So E(y(x0)) = β0 + β1x0 is estimated by ŷ(x0) = β̂0 + β̂1x0

(2) For the model without intercept

β̂ =
∑

xy∑
x2 is LSE and MLE for β.

SSE =
∑

y2 − (
∑

xy)2∑
x2 and SSE

n is MLE for σ2.

So E(y(x0)) = βx0 is estimated by ŷ(x0) = β̂x0

Ex1: For simple linear regression with intercept and sample
x: 1 0 2 -1
y: 2 5 3 4

find β̂1, β̂0, SSE and ŷ(3).
Six statistics: n = 4, x = 0.5, y = 3.5, Sxx = 5, Syy = 5, Sxy = −3.
So β̂1 =

Sxy
Sxx = −3

5 = −0.6, β̂0 = y − xβ̂1 = 3.5 + 0.5× 0.6 = 3.8

SSE = Syy − (Sxy)2

Sxx = 5− 9
5 = 3.2

and ŷ(3) = β̂0 + β̂1(3) = 3.8− 0.6× 3 = 2.

Ex2: For simple linear regression without intercept and sample in Ex1,
find β̂, SSE and ŷ(3).
Six statistics: n = 4,

∑
x = 2,

∑
y = 14,

∑
x2 = 6,

∑
y2 = 54,

∑
xy = 4.

So β̂ =
∑

xy∑
x2 = 0.6667

SSE =
∑

y2 − (
∑

xy)2∑
x2 = 51.3333

ŷ(3) = β̂ × 3 = 2.
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L02 Distributions of point estimators

1. Normal distribution of β̂

(1) β̂ ∼ N
(
β, σ2(X ′X)−1

)
By Theorem I: x ∼ N(µ, Σ) =⇒ Ax+ b ∼ N(Aµ+ b, AΣA′),
with y ∼ N

(
Xβ, σ2I

)
and β̂ = (X ′X)−1X ′y, β̂ ∼ N

(
β, σ2(X ′X)−1

)
.

Thus β̂ is an unbiased estimator (UE) for β since E(β̂) = β.

(2) For simple linear regression with intercept

β̂1 = (0, 1)β̂ ∼ N
(
β1, σ

2
β̂1

)
where σ2

β̂1
= σ2 1

Sxx .

β̂0 = (1, 0)β̂ ∼ N
(
β0, σ

2
β̂0

)
where σ2

β̂0
= σ2

(
1
n + x2

Sxx

)
.

ŷ(x0) = β̂0 + β̂1x0 = (1x0)β̂ ∼ N
(
β0 + β1x0, σ

2
ŷ(x0)

)
where σ2

ŷ(x0)
= σ2

(
1
n + (x0−x)2

Sxx

)
.

(3) For simple linear regression without intercept

β̂ ∼ N
(
β, σ2

β̂

)
where σ2

β̂
= σ2 1∑

x2 .

ŷ(x0) = β̂x0 ∼ N
(
βx0, σ

2
ŷ(x0)

)
where σ2

ŷ(x0)
= σ2 x2

0∑
x2 .

2. χ2-distribution associated with SSE

(1) SSE
σ2 ∼ χ2(n− c) where c is the number of columns of X.

Proof. By Theorem II:

If x ∼ N(µ, Σ) and A′ = A = AΣA, then x′Ax ∼ χ2(µ′Aµ, r)

where r = rank(A) = rank(Σ1/2AΣ1/2) = tr(Σ1/2AΣ1/2) = tr(AΣ),

with y ∼ N(Xβ, σ2I), SSE
σ2 = y′Ay where A = I−X(X′X)−1X′

σ2 . One can check
A′ = A = A

(
σ2I

)
A, (Xβ)′A(Xβ) = 0 and tr(Aσ2I) = n− c.

So SSE
σ2 ∼ χ2(0, n− c) = χ2(n− c).

Comment: Let n− c = rank[In−X(X ′X)−1X ′] be DF of SSE, and MSE= SSE
n−c . Then

MSE is an UE for σ2 since E
(
SSE
σ2

)
= E(χ2(n− c)) = n0c =⇒ E(MSE) = σ2.

(2) For the model with intercept
there is an SS table

Source SS DF MS

Error SSE n-2 MSE

σ2
β̂0

= σ2
(

1
n + x2

Sxx

)
has an UE S2

β̂0
= MSE

(
1
n + x2

Sxx

)
.

σ2
β̂1

= σ2 1
Sxx has an UE S2

β̂1
= MSE 1

Sxx .

σ2
ŷ(x0)

= σ2
(

1
n + (x0−x)2

Sxx

)
has an UE S2

ŷ(x0)
= MSE

(
1
n + (x0−x)2

Sxx

)
.

So there is a parameter table

Parameter Estimator Standard Error

β0 β̂0 S
β̂0

β1 β̂1 S
β̂1
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(3) For the model without intercept
there is an SS table

Source SS DF MS

Error SSE n-1 MSE

σ2
β̂
= σ2 1∑

x2 has an UE S2
β̂
= MSE 1∑

x2 .

σ2
ŷ(x0)

= σ2 x2
0∑
x2 has an UE S2

ŷ(x0)
= MSE

x2
0∑
x2 .

So there is a parameter table

Parameter Estimator Standard Error

β β̂ S
β̂

3. Independence of β̂ and SSE

(1) β̂ and SSE are independent

Proof. By Theorem III: x ∼ N(µ, Σ). then

AΣB′ = 0 =⇒ Ax and Bx are independent
B′ = B and AΣB = 0 =⇒ Ax and x′Bx are independent
A′ = A, B′ = B and AΣB = 0 =⇒ x′Ax and x′Bx are independent,

with y ∼ N(Xβ, σ2I), β̂ = Ay where A = (X ′X)−1X ′ and SSE = y′By where
B = In −X(X ′X)−1X ′. But Aσ2IB = 0. So β̂ and SSE are independent.

(2) t-distributions in the models
For the model with intercept,

β̂0−β0

s
β̂0

∼ t(n− 2), β̂1−β1

s
β̂1

∼ t(n− 2), ŷ(x0)−E(y(x0))
sŷ(x0)

∼ t(n− 2).

For the model with out intercept,
β̂−β
s
β̂

∼ t(n− 1) ŷ(x0)−E(y(x0))
Sŷ(x0)

∼ t(n− 1).

Proof. Show the first one. By the normal distribution of β̂0,
β̂0−β0

σ
β̂0

∼ N(0, 12) which

is independent to SSE
σ2 ∼ χ2(n− 2).

By definition of t-distribution, β̂0−β0

σ
β̂0

÷
√

SSE
σ2(n−2)

∼ t(n− 2), i.e., β̂0−β0

S
β̂0

∼ t(n− 2).

Ex: A sample for a simple linear regression with intercept produced

n = 4, x = 0.5, y = 3.5, Sxx = 5, Syy = 5, Sxy = −3.

Fill out SSE table and Parameter table.

Source SS DF MS

Error Syy − (Sxy)2

Sxx = 3.2 n− 2 = 2 1.6

Parameter Estimator Standard Error

β0 y − xβ̂1 = 3.8

√
MSE

(
1
n + x2

Sxx

)
= 0.6928

β1
Sxy
Sxx = −0.6

√
MSE
Sxx = 0.5657
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