- 1. Variables $y, x_1, x_2, x_3, x_4, x_5$ in Table B2 on page 575 are also stored in file B2.txt.
 - (1) Find the best model $y = \beta_0 + \beta_1 x_i + \beta_2 x_j + \epsilon$ by the largest R^2 criterion and its R^2 .

The best model by the largest R^2 criterion is

 $y = \beta_0 + \beta_1 x_3 + \beta_2 x_4 + \epsilon$ with $R^2 = 0.8589$.

SAS: proc reg; model y=x1 x2 x3 x4 x5/selection=rsquare; run;

(2) Find the best model $y = \beta_1 x_i + \beta_2 x_j + \epsilon$ by the largest R^2 criterion and its R^2 .

The best model by the largest R^2 criterion is

$$y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$$
 with $R^2 = 0.9955$.

SAS: proc reg; model y=x1 x2 x3 x4 x5/noint selection=rsquare; run;

(3) Find the best model $y = \beta_0 + \beta_1 x_i + \beta_2 x_j + \epsilon$ by forward selection.

The best model by forward selection is

$$y = \beta_0 + \beta_1 x_4 + \beta_2 x_3 + \epsilon$$

SAS: proc reg; model y=x1 x2 x3 x4 x5/selection=forward; run;

(4) Find the best model with intercept by the smallest Cp criterion and its Cp.

The best model by the smallest Cp criterion is

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$ with Cp = 5.7661.

SAS: proc reg; model y=x1 x2 x3 x4 x5/selection=cp; run;

(5) Find the best model without intercept by the smallest Cp criterion and its Cp, AIC, SBC and BIC.

The best model by the smallest Cp criterion is

 $y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$ with Cp = 3.0132

and AIC = 133.8447, SBC = 139.3130, BIC = 137.4198.

SAS: proc reg; model y=y=x1 x2 x3 x4 x5/noint selection=cp AIC SBC BIC; run;

2. Statistics table

		R-square	n=52	
	 1	0.2021	 x3	
	1	0.0857	x2	
	1	0.0001	x1	
	2	0.2596	x2 x3	
	2	0.2216	x1 x3	
	2	0.0859	x1 x2	
_				
	3	0.2757	x1 x2 x3	

is produced by

```
proc reg;
model y=x1 x2 x3/selection=rsquare;
run;
```

(1) Find C_p for the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \epsilon$. Hint: Use notations such as SSE(1, x1, x3), MSE(1, x1, x2, x3), $R^2(1, x1, x2, x3)$.

$$C_p = 2p - n + \frac{SSE_{(p)}}{MSE} = 2 \cdot 3 - 52 + \frac{SSE(1, x1, x3)}{SSE(1, x1, x2, x3)} \times (52 - 4)$$

= $-46 + \frac{SSTO - SSM(1, x1, x3)}{SSTO - SSM(1, x1, x2, x3)} \times 48 = -46 \frac{1 - R^2(1, x1, x3)}{1 - R^2(1, x1, x2, x3)} \times 48$
= $-46 + \frac{1 - 0.2216}{1 - 0.2757} \times 48 = 5.5853.$

(2) Find the first predictor selected by

proc reg; model y=x1 x2 x3/selection=Forward SLE=1.00; run;

and explain why.

The first predictor selected is x_3

In each of 3 models with 1 predictor, the test on the hypothesis that the coefficient of the predictor is zero is performed. The one that produces smallest p-value < 1 is selected. But this test is the global *F*-test in ANOVA table. The smallest *p*-value criterion is equivalent to the largest R^2 criterion. The model with x_3 produced the largest $R^2 = 0.2021$. Thus x_3 is selected as the first predictor.