Stat763 HW08

- 1. With data in table 8.1 on p270 and in file Table8-1.txt, the life for tool A and the life of tool B are believed to be $y_A = \beta_0 + \beta_{A1}x + \epsilon$ and $y_B = \beta_0 + \beta_{B1}x + \epsilon$ where two regression lines share the intercepts.
 - (1) In order to test H_0 : $\beta_{A1} = \beta_{B1}$ define a combined model and write out the hypothesis to be tested.

Let IA be the indicator for tool A. For model

 $y = \beta_0 + \beta_1 x + \beta_2 IA * x + \epsilon$

we need to test H_0 : $\beta_2 = 0$ versus H_a : $\beta_2 \neq 0$.

(2) Write the SAS code including data step for the test.

data a;	
<pre>infile "D:\Table8-1.txt";</pre>	proc reg;
input y x T \$;	<pre>model y=x IAx/noprint;</pre>
if T="A" then IA=1;	test IAx;
if T="B" then IA=0;	run;
IAx=IA*x;	

2. 7.21 p258

Consider polynomial regression model, $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$ with data in 7-21data.txt.

(1) For the first test in (c), the F-test on the significance of the contribution of the quadratic term, write the SAS code including data step.

data a;	proc reg;
<pre>infile "D:\7-21data.txt";</pre>	<pre>model y=x x2/noprint;</pre>
input y x @@;	test x2;
x2=x*x;	run;

(2) Write your report based on SAS output.

$$\begin{split} H_0: & \beta_2 = 0 \text{ versus } H_a: \beta_2 \neq 0\\ \text{Test statistic: } F = \frac{SSII_2}{MSE}\\ p\text{-value: } P(F(1, n-3) > F_{ob})\\ \\ F_{ob} = 55.01\\ p\text{-value: } P(F(1, 7) > 55.01) = 0.0001\\ \text{Reject } H_0.\\ \text{The contribution of quadratic term is significant.} \end{split}$$

3. 4.19 p173

Observations on x_1, x_2, x_3 and y are stored in 4-19data.txt. 9 levels of (x_1, x_2, x_3) : (-1, -1, 1), (1, -1, -1), (-1, 1, -1), (1, 1, 1), (-1, -1, -1), (1, -1, 1), (-1, 1, 1), (1, 1, -1) and (0, 0, 0) define 9 populations.

(1) For ANOVA $y = \mu(x_1, x_2, x_3) + \epsilon$, calculate SSPE and its DF.

 $SSPE = \sum_{i=1}^{9} CSS_i = 126.8333$ and DF = 14 - 9 = 5

(2) The following SAS will produce ANOVA table where you can find SSPE and its DF. Run SAS to verify your computation in (1).

<pre>data a;</pre>	<pre>proc anova;</pre>
infile "D:\4-19data.txt";	class x;
input x1 x2 x3 y;	model y=x;
x=100*x1+10*x2+x3;	run;

SSPE = 126.83; DF = 5