$\mathbf{Stat763}$

HW07

1. File Table94.txt contains variables $y, x_1, x_2, x_3, x_4, x_5, x_6$. Consider model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon, \ \epsilon \sim N(0, \ \sigma^2)$$

and null hypothesis H_0 : $\begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \beta = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

(1) Find SSE, DF of SSE, MSE, $SSII_0$ and $SSII_3$. (Use SAS)

$$\begin{split} \text{SSE} &= 97.65789, \qquad (\text{DF of SSE}) = 8, \qquad \text{MSE} = 12.20724 \\ \text{SSII}_0 &= 212.25159, \qquad \text{SSII}_3 = 10.94040. \end{split}$$

(2) Find the model reduced by H_0 .

$$H_0: \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \beta = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{cases} \beta_0 + 2\beta_1 - \beta_2 &= 0 \\ \beta_2 - \beta_3 &= 0 \end{cases} \iff \begin{cases} \beta_0 &= \beta_2 - 2\beta_1 \\ \beta_3 &= \beta_2 \end{cases}$$

Under H_0 ,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

= $\beta_2 - 2\beta_1 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + \epsilon = \beta_1 (x_1 - 2) + \beta_2 (x_2 + x_3 + 1) + \epsilon.$

So the reduced model is

$$y = \beta_1(x_1 - 2) + \beta_2(x_2 + x_3 + 1) + \epsilon, \ \epsilon \sim N(0, \sigma^2).$$

(3) For the reduced model find SSE_r , (DF of SSE_r) (Use SAS).

$$SSE_r = 353.11014$$
 and $(DF \text{ of } SSE_r) = 10.$

- 2. Consider the model in 1.
 - (1) Let F_0 and F_3 be the test statistics for testing on H_0 : $\beta_0 = 0$ and H_0 : $\beta_3 = 0$ respectively. Based on the results in (1) of 1, calculate the values of F_0 and F_3 .

$$F_0 = \frac{SSII_0}{MSE} = \frac{212.25159}{12.20724} = 17.38735 \qquad F_3 = \frac{SSII_3}{MSE} = \frac{10.94040}{12.20724} = 0.89622.$$

(2) Let F be the test statistic for testing on H_0 in 1. Based on the results in (1) and (3) of 1, calculate the value of F.

$$F = \frac{(SSE_r - SSE)/q}{MSE} = \frac{(353.11014 - 97.65789)/(10 - 8)}{12.20724} = \frac{127.72613}{12.20724} = 10.46$$

(3) Find the table by SAS for testing H_0 in 1 to verify your calculation in (2) of 2.

	DF	MS	F	Pr > F
Numerator	2	127.72613	10.46	0.0059
Denominator	8	12.20724		