Stat763 HW06

- 1. Consider model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \epsilon$ with $y, x_1, x_2, x_3, x_4, x_5, x_6$ stored in Table94.txt.
 - (1) Find SSE, DF and MSE

SSE = 6.37871, DF = 5 and MSE = 1.27574

(2) Find a 90% confidence interval for β_4

 $\widehat{\beta}_4 \pm t_{0.05}(5)S_{\widehat{\beta}_4} = -0.84396 \pm 2.015 \times 1.40313 = (-3.67133, 1.98341)$ is a 90% confidence interval for β_4 .

(3) With $x_{01} = 1$, $x_{02} = 5$, $x_{03} = 5$, $x_{04} = 5$, $x_{05} = 0$ and $x_{06} = -0.5$, find a 90% prediction interval for $y(x_0)$.

 $\begin{aligned} \widehat{y}(x_0) \pm t_{0.05}(5) S_{\widehat{y}(x_0) - y(x_0)} &= 1.3164 \pm 2.015 \sqrt{1.27574 + 8.4287^2} \\ &= 1.3164 \pm 17.1356 = (-15.8196, 18.452) \\ \text{is a 90\% prediction interval for } y(x_0). \end{aligned}$

- 2. Consider the model in 1 and H_0 : $\beta_i = 0$ for all i = 1, 3 versus H_a : $\beta_i \neq 0$ for some i = 1, 3.
 - (1) Find SSE_r from the model reduced by H_0

 $SSE_{r} = 9.11309$

(2) Complete ANOVA table for H_0

Source	\mathbf{SS}	DF	MS	\mathbf{F}	р
Hypothesis (N)	2.73438	2	1.36719	1.072	0.410
Error(D)	6.37871	5	1.27574		
Error(R)	9.11309	_7			

(3) In the reduced model find a 90% confidence interval for σ^2

 $\left(\frac{SSE}{\chi^2_{0.05}(7)}, \frac{SSE}{\chi^2_{0.95}(7)}\right) = \left(\frac{9.11309}{14.06738} \frac{9.11309}{2.16748}\right) = (0.6478, 4.2045)$ is a 90% confidence interval for σ^2 .