Stat 763

HW05

- 1. R^2 and R^2_{adj} are the coefficient of determination and the adjusted coefficient of determination for model $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$ based on a sample of size n.
 - (1) Find a formula expressing R_{adj}^2 via R^2 .

$$1 - R^{2} = \frac{SSE}{SSTO} \quad \text{and} \quad 1 - R_{adj}^{2} = \frac{MSE}{MSTO}.$$

So $1 - R_{adj}^{2} = \frac{MSE}{MSTO} = \frac{SSE}{SSTO} \frac{n-1}{n-(k+1)} = (1 - R^{2}) \frac{n-1}{n-(k+1)}.$
Thus $R_{adj}^{2} = 1 - \frac{n-1}{n-(k+1)} (1 - R^{2}).$

(2) Find a formula expressing R^2 via R^2_{adj}

$$1 - R^{2} = \frac{SSE}{SSTO} \quad \text{and} \quad 1 - R_{adj}^{2} = \frac{MSE}{MSTO}.$$

So $1 - R^{2} = \frac{SSE}{SSTO} = \frac{MSE}{MSTO} \frac{n - (k+1)}{n-1} = (1 - R_{adj}^{2}) \frac{n - (k+1)}{n-1}.$
Thus $R^{2} = 1 - \frac{n - (k+1)}{n-1} (1 - R_{adj}^{2}).$

2. 3.5 p126

Consider model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_6 + \epsilon$ with data in Table B.3 on p576 also in file B3.txt with observations on y, x_1 and x_6 only.

(1) (d) Find a 95% C. I. for β_1 .

$$\widehat{\beta}_{1} \pm t_{0.025}(29)S_{\widehat{\beta}_{1}} = -0.05302 \pm 2.045 \times 0.00615 = -0.05302 \pm 0.01258$$
$$= (-0.0656, -0.04044)$$

is a 95% C. I. for β_1 .

(2) (f) Find a 95% C. I. on the mean gasoline mileage when $x_{01} = 275$ in³ and $x_{06} = 2$ barrels.

 $\widehat{y}(x_0) \pm t_{0.025}(29)S_{\widehat{y}(x_0)} = 20.1872 \pm 2.045 \times 0.6448 = 20.1872 \pm 1.3186$ = (18.8684, 21.5061)

is a 95% C. I. for E(y) when $x_1 = 275$ and $x_6 = 2$.

(3) Find a 90% upper-sided confidence interval for mean gasoline mileage when $x_{01} = 275$ in³ and $x_{06} = 2$ barrels.

$$(\hat{y}(x_0) - t_{0.1}(29)S_{\hat{y}(x_0)}, \infty) = (21.1417 - 1.311 \times 0.6448, \infty)$$

= $(21.1417 - 0.8453, \infty) = (19.3416, \infty)$

is a 90% upper-sided C. I. for mean gasoline mileage when $x_{01} = 257$ and $x_{06} = 2$.