Stat763

HW03

1. The usefulness of the model $y = \beta_0 + \beta_1 + \epsilon$ is confirmed by an F-test for the significance for regression based on a sample of n = 20. The following statistics are also obtained.

$$\widehat{\beta}_0 = 2628, \ S_{\widehat{\beta}_0} = 44, \ \widehat{\beta}_1 = -37, S_{\widehat{\beta}_1} = 3, \ \widehat{y}(10) = 2258 \ \text{and} \ S_{\widehat{y}(10)} = 23.6.$$

Keep 3 digits after decimal point for all final computation results

(1) Find a 95% lower-sided CI for β_0 .

$$\widehat{\beta}_0 + t_{0.05}(18)S_{\widehat{\beta}_0} = 2628 + 1.734 \times 44 = 2704.296$$
. So
$$(-\infty, 2704.296) \text{ is a } 95\% \text{ lower-sided CI for } \beta_0.$$

(2) Find a 95% upper-sided CI for β_1 .

$$\widehat{\beta}_1 - t_{0.05}(18)S_{\widehat{\beta}_1} = -37 - 1.734 \times 3 = -42.202$$
. So
$$(-42.202, \infty) \text{ is a 95\% upp-sided CI for } \beta_1.$$

(3) Find a 95% CI for E[y(10)].

$$\widehat{y}(10) \pm t_{0.025}(18) S_{\widehat{y}(10)} = 2258 \pm 2.101 \times 23.6 = 2258 \pm 49.584 = (2208.416, 2307.584)$$
 So (2208.416, 2307.584) is a 95% CI for $E(y(10))$.

2. For $y = \beta x + \epsilon$, $\epsilon \sim N(0, \sigma^2)$, a sample of size n = 8 produced $\widehat{y}(0.65) = 0.4045$ and $S_{\widehat{y}(0.65)} = 0.0920$.

For final results of computations keep 4 digits after decimal points.

(1) Test $H_0: E[y(0.65)] \ge 1$ vs $H_a: E[y(0.65)] < 1$ using rejection region with level 0.05.

$$\begin{array}{|c|c|c|c|}\hline H_0: E[y(0.65)] \geq 1 \text{ versus } H_a: E[y(0.65)] < 1\\ \hline \text{Test statistic } t = \frac{\widehat{y}(0.65) - 1}{S_{\widehat{y}(0.65)}}\\ \hline \text{Reject } H_0 \text{ if } t < -1.895 \text{ for } \alpha = 0.05\\ t = \frac{0.4045 - 1}{0.0920} = -6.4728\\ \hline \text{Reject } H_0.\\ \hline \text{We conclude that } E[y(0.65)] < 1. \end{array}$$

1

(2) Test $H_0: E[y(0.65)] \le 2 \text{ vs } H_a: E[y(0.65)] > 2 \text{ using p-value.}$

```
\begin{split} H_0: & E[y(0.65)] \leq 2 \text{ versus } H_a: E[y(0.65)] > 2 \\ \text{Test statistic } t &= \frac{\widehat{y}(0.65) - 2}{S_{\widehat{y}(0.65)}} \\ \text{p-value: } & P(t(n-1) > t_{ob}) \\ & t &= \frac{0.4045 - 2}{0.0920} = -17.3424 \\ \text{p-value: } & P(t(7) > -17.3424) \approx 1 \\ \text{Fail to reject } & H_0. \\ \text{Data shows that } & E[y(0.65)] \leq 2. \end{split}
```

(3) Perform t-test on H_0 : E[y(0.65)] = 0 vs H_a : $E[y(0.65)] \neq 0$ using p-value.

```
H_0: E[y(0.65)] = 0 \text{ versus } H_a: E[y(0.65)] \neq 0

Test statistic t = \frac{\widehat{y}(0.65)}{S_{\widehat{y}(0.65)}}

p-value: 2P(t(n-1) > |t_{ob}|)

t = \frac{0.4045}{0.0920} = 4.3967

p-value: 2P(t(7) > 4.3967) = 2 \times 0.002 = 0.004

Reject H_0.

Conclude that E[y(0.65)] \neq 0.
```