Name:

For all computations keep 4 digits after decimal points.

1. The following is part of SAS output for a regression model based on a sample of size 10.

X'X Inver	se, Paramet	er Estin	nates, and	SSE		
Variable	X1	X2	Y			
X1	0.02294	-0.0182	1.06	68		
X2	-0.01822	0.0174	1.50	28		
Y	1.0668	1.5028	3 238			
R-sq: 0.9000						
Sou	rce	DF	SS			
Mod	.el					
Err	or					
U.	Total					

(1) Write out the model the SAS output is for.

(10 points)

 $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

(2) With $x_1 = 1$ and $x_2 = 1$, find estimated mean of response y. (15 points)

The mean of y when $x_1 = 1$ and $x_2 = 1$ is estimated by

 $\widehat{y} = \widehat{\beta}_1 + \widehat{\beta}_2 = 1.0668 + 1.5028 = 2.5696.$

(3) Fill the blanks in the ANOVA table.

From output SSE= 238
$$\begin{cases} \frac{SSM}{SSTO} = R^2 = 0.9\\ SSTO - SSM = SSE = 238 \end{cases} \Rightarrow \begin{cases} SSM = 2142\\ SSTO = 2380 \end{cases}$$

(25 points)

Variable	Estimate	S. E.	t	Pr> t	
Intercept	1.3694	1.3218	1.04	0.3224	
X1	0.5661	0.1821	3.11	0.0099	
Х2	-0.1725	0.1517	-1.14	0.2797	
X1 X2	0.5661 -0.1725	0.1821 0.1517	3.11 -1.14	0.0099 0.2797	

2. With a sample of size 14 for a regression SAS produced Parameter Table below.

(1) Write out the model the SAS output is for.

The model is $y = \beta_0 + \beta_1 x 1 + \beta_2 x 2 + \epsilon$, $\epsilon \sim N(0, \sigma^2)$.

(2) Find a 95% C. I. for the mean response when $x_1 = 0$ and $x_2 = 0$. (15 points)

$t_{\alpha}(DF)$	$\alpha = 0.01$	$\alpha = 0.025$	$\alpha = 0.05$
DF=10	2.764	2.228	1.812
DF=11	2.718	2.201	1.796
DF=12	2.681	2.179	1.782

 $\begin{aligned} \widehat{\beta}_0 \pm t_{\alpha/2}(n-p)S_{\widehat{\beta}_0} &= \widehat{\beta}_0 \pm t_{0.025}(11)S_{\widehat{\beta}_0} \\ &= 1.3694 \pm 2.201 \times 1.3218 = 1.3694 \pm 2.9093 \\ &= (-1.5399, 4.2787) \end{aligned}$

is a 95% C. I. for the mean response when $x_1 = 0$ and $x_2 = 0$.

(3) Find the smallest confidence coefficient such that the lower-sided confidence interval for β_2 covers value 0. (25 points)

 $\begin{array}{l} H_0: \ \beta_2 \geq 0 \ \text{versus} \ H_a: \ \beta_2 < 0 \\ \text{Test Statistic:} \ t = \frac{\widehat{\beta}_2}{S_{\widehat{\beta}_2}} \\ p\text{-value:} \ P(t(n-c) < t_{ob}) \\ t_{ob} = -1.14 \\ p\text{-value:} \ P(t(11) < -1.14) = \frac{0.2797}{2} = 0.1399 \end{array}$

The smallest confidence coefficient for lower-sided confidence interval for β_2 that covers 0 is 1 - 0.1399 = 0.8601 = 86.01%.

.

(10 points)