
1. Report your test on the claim that the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ provides a good fit to x_1, x_2, x_3 and y stored in 4-19data.txt. Use SAS so the correctness of your computation for SSPE and its DF in HW08 can be confirmed.

Suppose	$SSE(\emptyset)$	=	249657
	$SSE(\beta_0)$	=	1857
	$SSE(\beta_1)$	=	798
	$SSE(\beta_2)$	=	107.8
	$SSE(\beta_0, \beta_1)$	=	78
	$SSE(\beta_0, \beta_2)$	=	107.7
	$SSE(\beta_1, \beta_2)$	=	79
	$SSE(\beta_0, \beta_1, \beta_2)$	=	43

(1) For model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$, fill out Type I and Type II SS.

(2) For model $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$, fill out Type I and Type II SS.

 $\mathbf{x}\mathbf{2}$

	Type I SS	Type II SS
X1		
X2		

3. Based on n = 25 observations, $\overline{y} = 22.4$ and $CSS(y) = \sum_i (y_i - \overline{y})^2 = 5785$. In model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$, Intercept 12526 x1 5382. For model $y = \beta_0 + \beta_1 x_1 + \epsilon$, fill out

168

ANOVA table

2.

Source	DF	\mathbf{SS}	${ m MS}$	\mathbf{F}
Model				
Error				
C.Total				