L25 Matrices that store all derivatives

- 1. One function with a matrix of arguments
 - (1) Definition For $y = f(X) \in R$ where $X = (x_{ij})_{p \times q}$, define matrix $\frac{\partial y}{\partial X} = (y'_{x_{ij}})_{n \times q}$. Then this matrix stores all partial derivatives of y to x_{ij} , i = 1, ..., p; j = 1, ..., q. $\left(\frac{\partial y}{\partial X}\right)^T \stackrel{def}{=} \frac{\partial y^T}{\partial X^T} = \frac{\partial y}{\partial X^T}.$
 - (2) Formula 1: For $X \in R^{p \times p}$, $\frac{\partial \operatorname{tr}(X)}{\partial X} = I_p$. **Proof** $\frac{\partial \operatorname{tr}(X)}{\partial X} = \frac{\partial (x_{11} + x_{22} + \dots + x_{pp})}{\partial X} = I_p$.
 - (3) Formula 2: For $X \in \mathbb{R}^{p \times p}$, $\frac{\partial |X|}{\partial X} = |X| (X^T)^{-1}$. **Proof** Let $C = (c_{ij})_{p \times p}$ be the cofactor matrix of X. Then $XC^T = |X| I_p$. So $|X| = x_{i1}c_{i1} + \dots + x_{ij}c_{ij} + \dots + x_{ip}c_{ip} \Longrightarrow \frac{\partial |X|}{\partial x_{ij}} = c_{ij} \Longrightarrow \frac{\partial |X|}{\partial X} = C.$ But $XC^T = |X|I \Longrightarrow C^T = X^{-1}|X| \Longrightarrow C = |X|(X^T)^{-1}$. Thus $\frac{\partial |X|}{\partial X} = |X| (X^T)^{-1}$
 - (4) Formula 3: For $\alpha \in \mathbb{R}^p$, $\beta \in \mathbb{R}^q$ and $X = (x_{ij})_{p \times q}$, $\frac{\partial \alpha^T X \beta}{\partial X} = \alpha \beta^T$. **Proof** $\alpha^T X \beta = \sum_{i=1}^p \sum_{j=1}^q x_{ij} \alpha_i \beta_j \Longrightarrow \frac{\partial \alpha^T X \beta}{\partial x_{ij}} = \alpha_i \beta_j.$ So $\frac{\partial \alpha^T X \beta}{\partial X} = (\alpha_i \beta_j)_{p \times q} = \alpha \beta^T$.
 - (5) Formula 4: For $x \in \mathbb{R}^p$, $A \in \mathbb{R}^{p \times p}$, $\frac{\partial x^T A x}{\partial x} = (A + A^T)x$. **Ex1:** With $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $x^T A x = x_1^2 + 5x_1 x_2 + 4x_2^2$. So $\frac{\partial x^T Ax}{\partial x} = \begin{pmatrix} 2x_1 + 5x_2 \\ 5x_1 + 8x_2 \end{pmatrix}$ and

$$(A+A^T)x = \begin{bmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 5 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + 5x_2 \\ 5x_1 + 8x_2 \end{pmatrix}$$

$$= \frac{\partial x^T At}{\partial x}.$$

Comments: $\frac{\partial x^T Ax}{\partial x^T} = x^T (A + A^T)$. If $A^T = A$, then $\frac{\partial x^T Ax}{\partial x} = 2Ax$. **Ex2:** For Y = AXB where $A \in R^{m \times p}$ and $B \in R^{q \times n}$, $\frac{\partial (AXB)_{st}}{\partial X} = A^T E_{m \times n}(s,t)B^T$.

Proof Let $I_m = (e_{1m}, ..., e_{mm})$ and $I_n = (e_{1n}, ..., e_{nn})$. Then $(AXB)_{st} = e_{sm}^T AXBe_{tn}$. By Formula 3,

$$\frac{\partial (AXB)_{st}}{\partial X} = \frac{\partial e_{sm}^T AXB e_{tn}}{\partial X} = A^T e_{sm} e_{tn}^T B^T = A^T E_{m \times n}(s, t) B^T.$$

- 2. A matrix of functions with one argument
 - (1) Definition For $Y = (y_{st}(x))_{m \times n}$ define matrix $\frac{\partial Y}{\partial x} = \left(\frac{\partial y_{st}}{\partial x}\right)_{m \times n}$. Then this matrix stores all derivatives of y_{st} to x, s = 1, ..., m; t = 1, ..., n. $\left(\frac{\partial Y}{\partial x}\right)^T \stackrel{def}{=} \frac{\partial Y^T}{\partial x^T} = \frac{\partial Y^T}{\partial x}.$

(2) Examples

Ex3: For
$$Y = (2x, x^2 - 1)$$
, $\frac{\partial Y}{\partial x} = (2, 2x)$ and $\frac{\partial Y^T}{\partial x} = \begin{pmatrix} 2 \\ 2x \end{pmatrix}$.

Ex4: For
$$Y = AXB$$
 where $A \in R^{m \times p}$ and $B \in R^{q \times n}$, $\frac{\partial AXB}{\partial x_{ij}} = AE_{p \times q}(i,j)B$.

Proof Write
$$A = (A_1, ..., A_p), A_i = Ae_{ip}, B^T = (B_{(1)}, ..., B_{(q)})$$
 and $B_{(j)} = B^T e_{jq}$. Then

$$AXB = (A_1, ..., A_p) \begin{pmatrix} x_{11} & \cdots & x_{1q} \\ \vdots & \ddots & \vdots \\ x_{p1} & \cdots & x_{pq} \end{pmatrix} \begin{pmatrix} B_{(1)}^T \\ \vdots \\ B_{(q)}^T \end{pmatrix} = \sum_i \sum_j x_{ij} A_i B_{(j)}^T.$$
 So

$$\frac{\partial AXB}{\partial x_{ij}} = A_i B_{(j)}^T = A e_{ip} \left(B^T e_{jq} \right)^T = A e_{ip} e_{jq}^T B = A E_{p \times q}(i, j) B.$$

3. A vector of functions with a vector of arguments

(1) Definition

For
$$y = \begin{pmatrix} y_1(x) \\ \vdots \\ y_m(x) \end{pmatrix} \in R^m$$
 and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in R^p$, matrix $\frac{\partial y}{\partial x^T} = \begin{pmatrix} (y_1)'_{x_1} & \cdots & (y_1)'_{x_p} \\ \vdots & \ddots & \vdots \\ (y_m)'_{x_1} & \cdots & (y_m)'_{x_p} \end{pmatrix} \in$

 $R^{m \times p}$ stores all partial derivatives of $(y_i)'_{r}$, i = 1, ..., m; j = 1

$$\left(\frac{\partial y}{\partial x^T}\right)^T \stackrel{def}{=} \frac{\partial y^T}{\partial x} \in R^{p \times m}.$$

Ex5: For
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
, $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = Ax$, $\frac{\partial y}{\partial x^T} = \frac{\partial}{\partial x^T} Ax = \frac{\partial}{\partial x^T} \begin{pmatrix} x_1 + 2x_2 \\ 3x_1 + 4x_2 \\ 5x_1 + 6x_2 \end{pmatrix} = \begin{pmatrix} x_1 & 2 \\ 3x_1 & 3x_2 \\ 3x_1 & 3x_2 \\ 3x_2 & 3x_1 \\ 3x_1 & 3x_2 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = A.$$

- (2) Formula 5: $\frac{\partial Ax}{\partial x^T} = A$. $\frac{\partial (Ax)^T}{\partial x} = A^T$.
- (3) A matrix of functions with a matrix of arguments

For $Y = (y_{st}(X))_{m \times n}$ and $X = (x_{ij})_{p \times q}$ there are three ways to store all partial derivatives of $(y_{st})'_{x_{ij}}$.

- (i) Matrix $\frac{\partial \operatorname{vec}(Y)}{\partial [\operatorname{vec}(X)]^T} \in R^{mn \times pq}$ stores all partial derivatives.
- (ii) Matrices $\frac{\partial Y}{\partial x_{ij}} \in R^{m \times n}$, i = 1, ..., p; j = 1, ..., q store all partial derivatives.
- (iii) Matrices $\frac{\partial y_{st}}{\partial X} \in \mathbb{R}^{p \times q}$, s = 1, ..., m; t = 1, ..., n store all partial derivatives.

Ex6: For $Y = AXB \in \mathbb{R}^{m \times n}$ and $X \in \mathbb{R}^{p \times q}$,

(i)
$$\frac{\partial \operatorname{vec}(AXB)}{\partial [\operatorname{vec}(X)]^T} = \frac{\partial (B^T \otimes A) \operatorname{vec}(X)}{\partial [\operatorname{vec}(X)]^T} = B^T \otimes A.$$

(ii) By Ex1
$$\frac{\partial (AXB)_{st}}{\partial X} = A^T E_{m \times n}(s, t) B^T$$
, $s = 1, ..., m; t = 1, ..., n$.
(iii) By Ex4 $\frac{\partial AXB}{\partial x_{ij}} = A E_{p \times q}(i, j) B$, $i = 1, ..., p; j = 1, ..., q$.

(iii) By Ex4
$$\frac{\partial AXB}{\partial x_{ij}} = AE_{p\times q}(i,j)B$$
, $i = 1,..,p$; $j = 1,..,q$

L26: Chain rules

1. Derivative matrices in calculus

(1) Gradient vector

With
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $y = f(x_1, ..., x_n) = f(x)$, $\nabla f(x_1, ..., x_n) = \nabla f(x) = \begin{pmatrix} f'_{x_1}(x) \\ \vdots \\ f'_{x_n}(x) \end{pmatrix}$ is

called the gradient vector of y at x. $\nabla f(x) = \frac{\partial f(x)}{\partial x} \in \mathbb{R}^n$.

Comments: The gradient vector points to the direction along which the directional derivative of y at x is maximized.

 x_0 is a stationary point of $y = f(x) \stackrel{def}{\iff} \nabla f(x_0) = 0$.

(2) Hessian matrix

$$H_f(x) = \begin{pmatrix} f''_{x_1^2} & \cdots & f''_{x_1 x_n} \\ \vdots & \ddots & \vdots \\ f''_{x_n x_1} & \cdots & f''_{x_n^2} \end{pmatrix} \text{ storing all second order derivatives of } f(x) \text{ is called the}$$

Hessian matrix of y. $H_f(x) = \frac{\partial}{\partial x^T} \nabla(x) = \frac{\partial}{\partial x^T} \frac{\partial f(x)}{\partial x} = \frac{\partial^2 f(x)}{\partial x^T x} = \frac{\partial^2 f(x)}{\partial x^T x^T} = \frac{\partial}{\partial x} \frac{\partial f(x)}{\partial x^T}.$

Comments: Both $\nabla f(x)$ and $H_{f(x)}$ appear in Taylor expansion at x_0

$$f(x) = f(x_0) + (x - x_0)^T \nabla f(x_0) + \frac{1}{2} (x - x_0)^T H_{f(\xi)}(x - x_0)$$

where $\xi = \alpha x + (1 - \alpha)x_0$ for some $\alpha \in [0, 1]$.

If $H_{f(x)} \geq 0$ for all x, then f(x) is minimized at x_0 if and only if $\nabla f(x_0) = 0$, i.e., x_0 is stationary point.

(3) Jacobian matrix

Suppose $y = h_1(x) \in \mathbb{R}^n \iff x = h_2(y) \in \mathbb{R}^n$ and $x \in D_x \iff y \in D_y$. In the definite integral by substitution $y = h_1(x)$,

$$\iint_{D_x} f(x) dx_1, ... dx_n = \iint_{D_y} f(h_2(y)) \text{ abs} |J| dy_1, ..., dy_n$$

Here J is Jacobian matrix of the transfor

Comments:
$$J = \begin{pmatrix} (x_1)'_{y_1} & \cdots & (x_1)'_{y_n} \\ \vdots & \ddots & \vdots \\ (x_n)'_{y_1} & \cdots & (x_n)'_{y_n} \end{pmatrix}$$
 or $J = \begin{pmatrix} (x_1)'_{y_1} & \cdots & (x_n)'_{y_1} \\ \vdots & \ddots & \vdots \\ (x_1)'_{y_n} & \cdots & (x_n)'_{y_n} \end{pmatrix}$, i.e., $J = \frac{\partial x}{\partial y^T}$ or $J = \frac{\partial x^T}{\partial y}$. Thus notation $J = \frac{\partial x_1, \dots, x_n}{\partial y_1, \dots, y_n}$ is utilized.

- 2. Chain rules
 - (1) Three vectors

For $z \in R^m$, $y \in R^n$ and $x \in R^p$, $\frac{\partial z}{\partial x^T} = \frac{\partial z}{\partial y^T} \frac{\partial y}{\partial x^T}$. For example $\frac{\partial A(x-b)}{\partial x^T} = \frac{\partial Ax-Ab}{\partial x^T} = \frac{\partial Ax}{\partial x^T} = A$ can also be explained as $\frac{\partial A(x-b)}{\partial x^T} = \frac{\partial A(x-b)}{\partial (x-b)^T} \frac{\partial x-b}{\partial x^T} = A \frac{\partial x}{\partial x^T} = AI = A$.

3

Ex1: For
$$y = f(x) = ||Ax - b||^2 = (Ax - b)^T (Ax - b)$$
, find $\nabla f(x)$ and $H_{f(x)}$.
$$\frac{\partial f(x)}{\partial x^T} = \frac{\partial (Ax - b)^T (Ax - b)}{\partial x^T} = \frac{\partial (Ax - b)^T (Ax - b)}{\partial (Ax - b)^T} \frac{\partial Ax - b}{x^T} = (Ax - b)^T 2 A.$$
 So $\nabla f(x) = \frac{\partial f(x)}{\partial x} = 2A^T (Ax - b) = 2(A^T Ax - A^T b)$.
$$H_{f(x)} = \frac{\partial \nabla f(x)}{\partial x^T} = \frac{\partial}{\partial x^T} 2(A^T Ax - A^T b) = 2A^T A.$$

(2) One function and two matrices For $z \in R$, $Y \in R^{m \times n}$ and $X \in R^{p \times q}$,

$$\frac{\partial z}{\partial X} = \sum_{s} \sum_{t} \frac{\partial z}{\partial y_{st}} \left(\frac{\partial y_{st}}{\partial X} \right) = \sum_{s} \sum_{t} \left(\frac{\partial z}{\partial Y} \right)_{s,t} \left(\frac{\partial y_{st}}{\partial X} \right).$$

Ex2: With $A \in R^{n \times p}$, $X \in R^{p \times q}$ and $B \in R^{q \times n}$,

$$\begin{array}{lcl} \frac{\partial\operatorname{tr}(AXB)}{\partial X} & = & \sum_{s=1}^{n}\sum_{t=1}^{n}\left(\frac{\partial\operatorname{tr}(AXB)}{\partial(AXB)}\right)_{s,t}\left(\frac{\partial\left(AXB\right)_{st}}{\partial X}\right) \\ \\ & = & \sum_{s=1}^{n}\sum_{t=1}^{n}\left(I_{n}\right)_{s,t}\left[A^{T}E_{n\times n}(s,t)B^{T}\right] = A^{T}I_{n}B^{T} = (BA)^{T}. \end{array}$$

3. A example

Find minimizer of $y = f(x) = ||Ax - b||^2 = (Ax - b)T(Ax - b)$.

(1) Linear algebra approach

$$||Ax - b||^2$$
 is minimized at $\widehat{x} \iff A\widehat{x} = \pi(b \mid \mathcal{R}(A) \iff A\widehat{x} = AA^+b$.

(2) Calculus approach

By Ex1,
$$\nabla f(x) = 2(A^TAx - A^Tb)$$
 and $H_{f(x)} = 2A^TA \ge 0$ for all x. Thus

$$||Ax - b||^2$$
 is minimized at $\widehat{x} \iff \widehat{x}$ is a stationary point $\iff \nabla f(\widehat{x}) = 0$
 $\iff 2(A^T A \widehat{x} - A^T b) = 0 \iff A^T A \widehat{x} = A^T b.$

(3) Equivalency

$$A\widehat{x} = AA^+b \iff A^TA\widehat{x} = A^Tb.$$

$$\Rightarrow$$
: $A\widehat{x} = AA^+b \Longrightarrow A^TA\widehat{x} = A^T(AA^+)b = A^T(AA^+)^Tb = (AA^+A)^Tb = A^Tb$.

$$\Leftarrow: A^T A \widehat{x} = A^T b \Longrightarrow (A^+)^T (A^T A) \widehat{x} = (A^+)^T A^t b \Longrightarrow (AA^+)^T A \widehat{x} = (AA^+)^T b$$
$$\Longrightarrow AA^+ A \widehat{x} = AA^+ b \Longrightarrow A \widehat{x} = AA^+ b.$$