L22: Vectorization and Kronecker product

1. Matrix vectorization

(1) Definition

For X = (X4,...,X;) € O™ ", define vec(X) = | : | € C™".
Xn
(i) VX € ¢™* J1Y € C™ such that vec(X) =Y, ie., vec(-) is an injection from
C™m*™ to C™™. (picture)
(ii) VY € ¢™ I X € C™*" such that vec(X) = Y, ie., vec(:) is a surjection from
Cmxm to O™
(iii) VY e C™", 31 X € C"™*" such that vec(X) =Y.
(i)+(iii) means that vec(-) is a 1-1 mapping between C"™*™ and C™".
(2) vec(-) is a linear transformation
vec(aA + B) = a vec(A) + [ vec(B).
(3) vec(-) preserves Frobenius inner product: (A, B) = (vec(A), vec(B)).
For A = (aij)mxn and B = (bij)mxna
(A, B) = tr(B*A) = tr(AB*) = tr(BA') = tx(A'B) = >, > aijbij.
(vec(A), vec(B)) = [vec(B)|*vec(A) = [vec(A)] [vec(B)] = Zz > aijbij.
For real matrices
(A, B) = tr(B'A) = tr(AB') = tr(A'B) = tr(BA") = 3, >, ai;bij
(vec(A), vec(B)) = [vec(B)]'vec(A) = [vec(A)]'vec(B) = 32, >~ aijbi;.
Comment: C™*™ and C™" as two sets, as two linear spaces and as two linear spaces

with inner products are isomorphic (the same). The 1-1 mapping vec(+) is called an
isomorphism.

2. Kronecker product

(1) Definition

CLHB e alnB
For A = (aij)mxn and B € CP*9, A® B = : : e Cmp)x(na) g the
amB - amnB
Kronecker product of A and B.
(2) Basic properties
(i) Kronecker product is not commutative
1 1
1 1 2 1
Exl.x-(l),y—<2),x®y— 1 , YR = 9 LIRQYF YR
2 2

(ii) Kronecker product is associative
(A®B)®(C=A® (B®C). So we simply write A® B® C.
(iii) Distribution law holds
(A+B)®C=(A®C)+(B®C)and C® (A+ B) = (C® A) + (C® B)
(iv) Kronecker product with scalar multiplication
a(A®B)=(ad)®B=A® (aB)



(3)

Kronecker product and matrix multiplication
(AB)® (CD) = (A® C)(B® D)
Comment I: From the right to the left the condition on the validity of the left is needed.

2
Ex2: Let A= B = (;) and C =D = (0,1). Then (A®C)(B® D) = (8 ;) .
But in (AB) ® (CD) both AB and CD are not valid expressions.
Comment II: Multiple factors in matrix product
(A1Ay- - Ap) ® (B1By--- Bg) = (A1 ® B1)(A2 ® By) - -+ (A, ® Bg)
Comment ITI: Multiple factors in kronecker products
(A142) @ (B1B2) @ -+ @ (C1C2) = (A1 @ B1 @ @ C1)(A2 @ Bo® - ® Ca).
Comment I'V: Multiple factors in both matrix multiplication and in Kronecker product
(A1 Arg) @ (Ao1 -+ Agg) @ -+ @ (Ap1 -+ Apg)
= (All®“'®An1)(A12®"'®An2)"'(A1k®"'®Ank)

3. Kronecker product of one row vector and one column vector
Let z, y and 2z be column vectors.

(1)

While generally A ® B # B ® A, for column vectors z and v,
2@y =y r=zy andry* =y @z =y

Pf: Show the second equation system.
*

T Y 1Y Ty o T1Yn
Foro=1|: landy=[: [,zey' = : |=| :+ "~ | =y
ryr o T1Yp
and y* @z = (yz -+ Ypx) = : : = zy*
TnYy -0 TaY

vec(z ®@y') = vec(y @ x) = vec(zy') =y @
vec(r ®@ y*) = vec(y* ® x) = vec(zy*) =y @z
Pf: Show the first one
T1iyr 0 TiYn Yz
vec(xy') = vec : : = : |=y®z
ImYr  TmlYn YnT
YRyRz=yrz=yz02 = (y® z2)2’
TFRYV2z=yYRr Qr=y 01" = (y® z)z’*
vee(r' @y z) =vec(lyRz@a') =vec[(y@2)r | =2y ® 2
vec(z* @y ®z) =vec(y R z@ ") =vec[(y @ 2)z*| =T Ry 2
Ex3: For x € C" and y € C" find (v ® y/')? and vec[(z @ ¥')?].

(z@y)?=(@ey)(zey) =y e2)(zay)= ()& (=) =yrzy

vee|(z @ y)?] = vee(y'zzy') = (y'x)(y @ z).



L23 Eigenvalues, ranks, trace and determinants of A ® B

1. Moreon A® B

(1) Aw B=A®B. Recall that AB = A B.

Proof With A = (a;;)mxn, A ® B has (i, j) block a;;B. A® B has (i, j) block a;; B
But CLUB :aijg. So A B :Z(X)E

(2) (AeB)=A®B' Recall that (AB)' = B'A’.
anB - amB\’ anB' - amB’
Proof (A® B) = : : = : : =A®B.
amB - amnB a1y B o amn B’
Ex1: If both A and B are symmetric, so is A® B since (A® B) =A@ B'= A® B.
(3) (A® B)* = A* @ B*, Recall (AB)* = B*A*.

! — — — —_—
Proof (A® B)* = [(A@B)} = (A2 B)' = (4)'® (B) = A* @ B*
Ex2: If both A and B are Hermitian so is A ® B since (A® B)* = A*®@ B* = A® B.
(4) (A® B)t = AT @ B™. Under special conditions (AB)" = BT AT,
Proof For A® Blet G = AT ® B*. One can show that the four Penrose conditions are
satisfied. Here we show (iii) (A ® B)G is Hermitian.
(A® B)G = (A® B)(AT ® BT) = (AA") ® (BB™") is Hermitian since both AA™
and BB™ are Hermitian.

2. Schur-decomposition of A ® B

(1) If A and B are both unitary matrices, so is A ® B.
Proof If A and B are both unitary, then A* = A~! and B* = B,
So (A® B)*(A® B) = (A*A) ® (B*B) = I, ® I, = L.
Thus (A® B)* = (A® B)~!. Hence A ® B is unitary.

(2) If A e C™™ and B € C™ " are both upper-triangular, so is A ® B.

Proof If A and B are both upper-triangular, then
CL11B s almB
A®B = : : is also upper-trianglular.
0 ceo app B
Comments: If both A and B are lower-triangular, so is A ® B.
If both A and B are diagonal, so is A ® B.

(3) If A= XDX* and B =YTY" are Schur-decompositions for A and B,
then AQ B=(X®Y)(D®T)(X ®Y)* is the Schur-decomposition for A ® B.
Pf: A B=(XDX*)®@ YTY*)=(XQY)DT)(X®Y)*.
X and Y are unitary=— X ® Y is unitary.
D and T are upper-triangular=—- D ® T' is upper-trianglular.
SO AR B=(X®Y)(DeT)(X ®Y)*is a Schur-decomposition.
Comment: A® B and D ® T are similar.



3. Eigenvalues, ranks, traces and determinants of A ® B

(1) Eigenvalues of A® B and B® A

If A1, ..., A\, are eigenvalues for A € C™*™ and 71, ..., v, are eigenvalues for B € C™*"™,

then X\;yj, i =1,..,m and j = 1,...,n are eigenvalues for A ® B.

Pf: A\, ..., A\ and 41, ...,7, are eigenvalues for A and B with Schur-decompositions
A= XDX*and B =YTY*. Then Aq,..., A\, and 71, ...,7, are diagonal elements
of D and T. So A\jyj, ¢ =1,..,m and j = 1,...,n are diagonal elements of D ® T" in
Shur-decomposition A ® B = (X @Y )(D®T)(X ®Y)*. So A\iyj, i = 1,..,m and
j=1,..,n are eigenvalues of A ® B. Similarly they are eigenvalues of B ® A.

| m o
AL | A o A

(2) rank(A ® B) = rank(A) rank(B) = rank(B ® A)
If Ae C™" and B € CP*9, then rank(A ® B) = rank(A) rank(B) = rank(B ® A).
Pf: rank(A) = rank(AA™T) = # of non-zero in Ay, .., Ay, the eigenvalues of AAT.
rank(B) = rank(BB™) = # of non-zero in 71, ...,7,, the eigenvalues of BBT.
rank(A ® B) = rank[(A ® B)(A® B)"| = rank[(AAT) @ (BB™)]
= # of non-zero in A\;y;, i = 1,..,m; j = 1,..,p, the eigenvalues of (AAT) ® (BB.
But this number is the product of the previous two.
(3) tr(A® B) =tr(A)tr(B) =tr(B® A)
If Ae C™ and B € C™*", then tr(A® B) = tr(A) tr(B) = tr(B® A).
Pf: Suppose A has eigenvalues Aq, .., Ay, and B has eigenvalues 71, ..., 7,. Then
tI‘(A ® B) = [(>\1’Yl) +o (Al/Yn)} R [(Am’}’l) +ot ()‘m’)/n)]
= AMtr(B) 4+ -+ Aptr(B) = tr(A) tr(B) = tr(B® A)
(4) [A® B| = |A]"[B]" = |B® 4]
If Ae C"™ and B € C"*", then |[A® B| = |A|" |B|™
Pf: With the assumption on the eigenvalues in the proof of (3)

[A© Bl = [(Ay) - (M)l [(Am1) -+ (Amyn)]
= MBIl An|Bl = [A]"[B[™

Comments: If A € C™*™ and B € C™*™ with m # n, then A and B do not have eigenvalues,

traces and determinants. But A ® B € C™™*™" and B ® A € C""*™" do.

(1) A® B and B ® A may no longer share the eigenvalues.

(ii) rank(A® B) = rank(A) rank(B) = rank(B ® A) holds for A € C™*" and B € CP*4.

(ili) When A € C™*™ and B € C™*™, one can find an example of tr(A® B) # tr(B® A).
This is a HW problem.

(iv) When A € C"™*" and B € C™*™, |A® B| = |B ® A| holds. This is also a HW
problem.



