L22: Vectorization and Kronecker product

1. Matrix vectorization

(1) Definition

For
$$X=(X_1,...,X_n)\in C^{m\times n},$$
 define $\mathrm{vec}(X)=\begin{pmatrix} X_1\\ \vdots\\ X_n \end{pmatrix}\in C^{mn}.$

- (i) $\forall X \in C^{m \times n}$, $\exists ! Y \in C^{mn}$ such that vec(X) = Y, i.e., $\text{vec}(\cdot)$ is an injection from $C^{m \times n}$ to C^{mn} . (picture)
- (ii) $\forall Y \in C^{mn} \exists X \in C^{m \times n}$ such that vec(X) = Y, i.e., $\text{vec}(\cdot)$ is a surjection from $C^{m \times n}$ to C^{mn} .
- (iii) $\forall Y \in C^{mn}$, $\exists ! X \in C^{m \times n}$ such that vec(X) = Y. (i)+(iii) means that $\text{vec}(\cdot)$ is a 1-1 mapping between $C^{m \times n}$ and C^{mn} .
- (2) $\operatorname{vec}(\cdot)$ is a linear transformation $\operatorname{vec}(\alpha A + \beta B) = \alpha \operatorname{vec}(A) + \beta \operatorname{vec}(B)$.
- (3) $\operatorname{vec}(\cdot)$ preserves Frobenius inner product: $\langle A, B \rangle = \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle$. For $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$, $\langle A, B \rangle = \operatorname{tr}(B^*A) = \operatorname{tr}(AB^*) = \operatorname{tr}(\overline{B}A') = \operatorname{tr}(A'\overline{B}) = \sum_i \sum_j a_{ij} \overline{b}_{ij}$. $\langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle = [\operatorname{vec}(B)]^* \operatorname{vec}(A) = [\operatorname{vec}(A)]' [\operatorname{vec}(B)] = \sum_i \sum_j a_{ij} \overline{b}_{ij}$.

For real matrices

$$\langle A, B \rangle = \operatorname{tr}(B'A) = \operatorname{tr}(AB') = \operatorname{tr}(A'B) = \operatorname{tr}(BA') = \sum_{i} \sum_{j} a_{ij}b_{ij}$$

 $\langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle = [\operatorname{vec}(B)]'\operatorname{vec}(A) = [\operatorname{vec}(A)]'\operatorname{vec}(B) = \sum_{i} \sum_{j} a_{ij}b_{ij}.$

Comment: $C^{m \times n}$ and C^{mn} as two sets, as two linear spaces and as two linear spaces with inner products are isomorphic (the same). The 1-1 mapping $\text{vec}(\cdot)$ is called an isomorphism.

2. Kronecker product

(1) Definition

For
$$A = (a_{ij})_{m \times n}$$
 and $B \in C^{p \times q}$, $A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix} \in C^{(mp) \times (nq)}$ is the

Kronecker product of A and B.

- (2) Basic properties
 - (i) Kronecker product is not commutative

Ex1:
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x \otimes y = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, y \otimes x = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}. x \otimes y \neq y \otimes x$$

- (ii) Kronecker product is associative $(A \otimes B) \otimes C = A \otimes (B \otimes C)$. So we simply write $A \otimes B \otimes C$.
- (iii) Distribution law holds $(A+B) \otimes C = (A \otimes C) + (B \otimes C)$ and $C \otimes (A+B) = (C \otimes A) + (C \otimes B)$

1

(iv) Kronecker product with scalar multiplication $\alpha(A \otimes B) = (\alpha A) \otimes B = A \otimes (\alpha B)$

(3) Kronecker product and matrix multiplication $(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$

Comment I: From the right to the left the condition on the validity of the left is needed.

Ex2: Let
$$A = B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $C = D = (0, 1)$. Then $(A \otimes C)(B \otimes D) = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}^2$.

But in $(AB) \otimes (CD)$ both AB and CD are not valid expressions.

Comment II: Multiple factors in matrix product

$$(A_1A_2\cdots A_k)\otimes (B_1B_2\cdots B_k)=(A_1\otimes B_1)(A_2\otimes B_2)\cdots (A_k\otimes B_k)$$

Comment III: Multiple factors in kronecker products

$$(A_1A_2)\otimes (B_1B_2)\otimes \cdots \otimes (C_1C_2)=(A_1\otimes B_1\otimes \cdots \otimes C_1)(A_2\otimes B_2\otimes \cdots \otimes C_2).$$

Comment IV: Multiple factors in both matrix multiplication and in Kronecker product $(A_{11} \cdots A_{1k}) \otimes (A_{21} \cdots A_{2k}) \otimes \cdots \otimes (A_{n1} \cdots A_{nk})$ = $(A_{11} \otimes \cdots \otimes A_{n1})(A_{12} \otimes \cdots \otimes A_{n2}) \cdots (A_{1k} \otimes \cdots \otimes A_{nk})$

- 3. Kronecker product of one row vector and one column vector Let x, y and z be column vectors.
 - (1) While generally $A \otimes B \neq B \otimes A$, for column vectors x and y,

$$x \otimes y' = y' \otimes x = xy'$$
 and $x \otimes y^* = y^* \otimes x = xy^*$

Pf: Show the second equation system.

For
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$
 and $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $x \otimes y^* = \begin{pmatrix} x_1 y^* \\ \vdots \\ x_n y^* \end{pmatrix} = \begin{pmatrix} x_1 \overline{y}_1 & \cdots & x_1 \overline{y}_n \\ \vdots & \ddots & \vdots \\ x_n \overline{y}_1 & \cdots & x_n \overline{y} \end{pmatrix} = xy^*$ and $y^* \otimes x = (\overline{y}_1 x & \cdots & \overline{y}_n x) = \begin{pmatrix} x_1 \overline{y}_1 & \cdots & x_1 \overline{y}_n \\ \vdots & \ddots & \vdots \\ x_n \overline{y}_1 & \cdots & x_n \overline{y} \end{pmatrix} = xy^*$

(2) $\operatorname{vec}(x \otimes y') = \operatorname{vec}(y' \otimes x) = \operatorname{vec}(xy') = y \otimes x$ $\operatorname{vec}(x \otimes y^*) = \operatorname{vec}(y^* \otimes x) = \operatorname{vec}(xy^*) = \overline{y} \otimes x$

Pf: Show the first one

vec
$$(xy')$$
 = vec $\begin{bmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & \ddots & \vdots \\ x_my_1 & \cdots & x_my_n \end{bmatrix} = \begin{pmatrix} y_1x \\ \vdots \\ y_nx \end{pmatrix} = y \otimes x.$

(3) $x' \otimes y \otimes z = y \otimes x' \otimes z = y \otimes z \otimes x' = (y \otimes z)x'$ $x^* \otimes y \otimes z = y \otimes x^* \otimes z = y \otimes z \otimes x^* = (y \otimes z)x^*$ $\operatorname{vec}(x' \otimes y \otimes z) = \operatorname{vec}(y \otimes z \otimes x') = \operatorname{vec}[(y \otimes z)x'] = x \otimes y \otimes z$ $\operatorname{vec}(x^* \otimes y \otimes z) = \operatorname{vec}(y \otimes z \otimes x^*) = \operatorname{vec}[(y \otimes z)x^*] = \overline{x} \otimes y \otimes z$

Ex3: For $x \in C^n$ and $y \in C^n$ find $(x \otimes y')^2$ and $\text{vec}[(x \otimes y')^2]$.

$$(x \otimes y')^2 = (x \otimes y')(x \otimes y') = (y' \otimes x)(x \otimes y') = (y'x) \otimes (xy') = y'xxy'$$
$$\operatorname{vec}[(x \otimes y')^2] = \operatorname{vec}(y'xxy') = (y'x)(y \otimes x).$$

L23 Eigenvalues, ranks, trace and determinants of $A \otimes B$

- 1. More on $A \otimes B$
 - (1) $\overline{A \otimes B} = \overline{A} \otimes \overline{B}$.

Recall that $\overline{AB} = \overline{A} \overline{B}$.

Proof With $A = (a_{ij})_{m \times n}$, $\overline{A \otimes B}$ has (i, j) block $\overline{a_{ij}B}$. $\overline{A} \otimes \overline{B}$ has (i, j) block $\overline{a_{ij}B}$. But $\overline{a_{ij}B} = \overline{a_{ij}} \overline{B}$. So $\overline{A \otimes B} = \overline{A} \otimes \overline{B}$.

 $(2) (A \otimes B)' = A' \otimes B'.$

Recall that (AB)' = B'A'.

$$\mathbf{Proof}\ (A\otimes B)' = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}' = \begin{pmatrix} a_{11}B' & \cdots & a_{m1}B' \\ \vdots & \ddots & \vdots \\ a_{1n}B' & \cdots & a_{mn}B' \end{pmatrix} = A'\otimes B'.$$

Ex1: If both A and B are symmetric, so is $A \otimes B$ since $(A \otimes B)' = A' \otimes B' = A \otimes B$.

 $(3) (A \otimes B)^* = A^* \otimes B^*.$

Recall $(AB)^* = B^*A^*$.

$$\mathbf{Proof}\ (A\otimes B)^* = \left\lceil \overline{(A\otimes B)} \right\rceil' = \left(\overline{A}\otimes \overline{B}\right)' = \left(\overline{A}\right)'\otimes \left(\overline{B}\right)' = A^*\otimes B^*$$

Ex2: If both A and B are Hermitian so is $A \otimes B$ since $(A \otimes B)^* = A^* \otimes B^* = A \otimes B$.

 $(4) (A \otimes B)^+ = A^+ \otimes B^+.$

Under special conditions $(AB)^+ = B^+A^+$.

Proof For $A \otimes B$ let $G = A^+ \otimes B^+$. One can show that the four Penrose conditions are satisfied. Here we show (iii) $(A \otimes B)G$ is Hermitian.

 $(A \otimes B)G = (A \otimes B)(A^+ \otimes B^+) = (AA^+) \otimes (BB^+)$ is Hermitian since both AA^+ and BB^+ are Hermitian.

- 2. Schur-decomposition of $A \otimes B$
 - (1) If A and B are both unitary matrices, so is $A \otimes B$.

Proof If A and B are both unitary, then $A^* = A^{-1}$ and $B^* = B^{-1}$.

So $(A \otimes B)^*(A \otimes B) = (A^*A) \otimes (B^*B) = I_m \otimes I_n = I_{mn}$.

Thus $(A \otimes B)^* = (A \otimes B)^{-1}$. Hence $A \otimes B$ is unitary.

(2) If $A \in C^{m \times m}$ and $B \in C^{n \times n}$ are both upper-triangular, so is $A \otimes B$.

Proof If A and B are both upper-triangular, then

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1m}B \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn}B \end{pmatrix} \text{ is also upper-trianglular.}$$

Comments: If both A and B are lower-triangular, so is $A \otimes B$.

If both A and B are diagonal, so is $A \otimes B$.

(3) If $A = XDX^*$ and $B = YTY^*$ are Schur-decompositions for A and B, then $A \otimes B = (X \otimes Y)(D \otimes T)(X \otimes Y)^*$ is the Schur-decomposition for $A \otimes B$.

Pf: $A \otimes B = (XDX^*) \otimes (YTY^*) = (X \otimes Y)(D \otimes T)(X \otimes Y)^*.$

X and Y are unitary $X \otimes Y$ is unitary.

D and T are upper-triangular $\Longrightarrow D \otimes T$ is upper-triangular.

So $A \otimes B = (X \otimes Y)(D \otimes T)(X \otimes Y)^*$ is a Schur-decomposition.

Comment: $A \otimes B$ and $D \otimes T$ are similar.

- 3. Eigenvalues, ranks, traces and determinants of $A \otimes B$
 - (1) Eigenvalues of $A \otimes B$ and $B \otimes A$ If $\lambda_1, ..., \lambda_m$ are eigenvalues for $A \in C^{m \times m}$ and $\gamma_1, ..., \gamma_n$ are eigenvalues for $B \in C^{m \times n}$, then $\lambda_i \gamma_j$, i = 1, ..., m and j = 1, ..., n are eigenvalues for $A \otimes B$.
 - **Pf:** $\lambda_1,...,\lambda_m$ and $\gamma_1,...,\gamma_n$ are eigenvalues for A and B with Schur-decompositions $A=XDX^*$ and $B=YTY^*$. Then $\lambda_1,...,\lambda_m$ and $\gamma_1,...,\gamma_n$ are diagonal elements of D and T. So $\lambda_i\gamma_j$, i=1,...,m and j=1,...,n are diagonal elements of $D\otimes T$ in Shur-decomposition $A\otimes B=(X\otimes Y)(D\otimes T)(X\otimes Y)^*$. So $\lambda_i\gamma_j$, i=1,...,m and j=1,...,n are eigenvalues of $A\otimes B$. Similarly they are eigenvalues of $B\otimes A$.

$$\begin{array}{c|ccccc} & \gamma_1 & \cdots & \gamma_n \\ \hline \lambda_1 & \lambda_1 \gamma_1 & \cdots & \lambda_1 \gamma_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_m & \lambda_m \gamma_1 & \cdots & \lambda_m \gamma_n \end{array}$$

- (2) $\operatorname{rank}(A \otimes B) = \operatorname{rank}(A) \operatorname{rank}(B) = \operatorname{rank}(B \otimes A)$ If $A \in C^{m \times n}$ and $B \in C^{p \times q}$, then $\operatorname{rank}(A \otimes B) = \operatorname{rank}(A) \operatorname{rank}(B) = \operatorname{rank}(B \otimes A)$.
 - **Pf:** $\operatorname{rank}(A) = \operatorname{rank}(AA^+) = \#$ of non-zero in $\lambda_1, ..., \lambda_m$, the eigenvalues of AA^+ . $\operatorname{rank}(B) = \operatorname{rank}(BB^+) = \#$ of non-zero in $\gamma_1, ..., \gamma_p$, the eigenvalues of BB^+ . $\operatorname{rank}(A \otimes B) = \operatorname{rank}[(A \otimes B)(A \otimes B)^+] = \operatorname{rank}[(AA^+) \otimes (BB^+)] = \#$ of non-zero in $\lambda_i \gamma_j$, i = 1, ..., m; j = 1, ..., p, the eigenvalues of $(AA^+) \otimes (BB)$. But this number is the product of the previous two.
- (3) $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A) \operatorname{tr}(B) = \operatorname{tr}(B \otimes A)$ If $A \in C^{m \times m}$ and $B \in C^{n \times n}$, then $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A) \operatorname{tr}(B) = \operatorname{tr}(B \otimes A)$.
 - **Pf:** Suppose A has eigenvalues $\lambda_1, ..., \lambda_m$ and B has eigenvalues $\gamma_1, ..., \gamma_n$. Then $\operatorname{tr}(A \otimes B) = [(\lambda_1 \gamma_1) + \cdots + (\lambda_1 \gamma_n)] + \cdots + [(\lambda_m \gamma_1) + \cdots + (\lambda_m \gamma_n)]$ = $\lambda_1 \operatorname{tr}(B) + \cdots + \lambda_m \operatorname{tr}(B) = \operatorname{tr}(A) \operatorname{tr}(B) = \operatorname{tr}(B \otimes A)$
- (4) $|A \otimes B| = |A|^n |B|^m = |B \otimes A|$ If $A \in C^{m \times m}$ and $B \in C^{n \times n}$, then $|A \otimes B| = |A|^n |B|^m$

Pf: With the assumption on the eigenvalues in the proof of (3)

$$|A \otimes B| = [(\lambda_1 \gamma_1) \cdots (\lambda_1 \gamma_n)] \cdots [(\lambda_m \gamma_1) \cdots (\lambda_m \gamma_n)]$$

= $\lambda_1^n |B| \cdots \lambda_m^n |B| = |A|^n |B|^m$

Comments: If $A \in C^{m \times n}$ and $B \in C^{n \times m}$ with $m \neq n$, then A and B do not have eigenvalues, traces and determinants. But $A \otimes B \in C^{mn \times mn}$ and $B \otimes A \in C^{mn \times mn}$ do.

- (1) $A \otimes B$ and $B \otimes A$ may no longer share the eigenvalues.
- $\text{(ii) } \operatorname{rank}(A \otimes B) = \operatorname{rank}(A) \operatorname{rank}(B) = \operatorname{rank}(B \otimes A) \text{ holds for } A \in C^{m \times n} \text{ and } B \in C^{p \times q}.$
- (iii) When $A \in C^{m \times n}$ and $B \in C^{n \times m}$, one can find an example of $\operatorname{tr}(A \otimes B) \neq \operatorname{tr}(B \otimes A)$. This is a HW problem.
- (iv) When $A \in C^{m \times n}$ and $B \in C^{n \times m}$, $|A \otimes B| = |B \otimes A|$ holds. This is also a HW problem.