L17 Least square solutions

- 1. Least square solutions
 - (1) Definition of least square solutions Regardless if Ax = b is consistent or inconsistent, define

 \widehat{x} is a least square solution (LSS) to $Ax = b \stackrel{def}{\iff} ||b - A\widehat{x}||^2 \le ||b - Ax||^2$ for all x.

Then the collection of all LSSs to Ax = b is $A^+b + \mathcal{N}(A)$.

Proof: \widehat{x} is a LSS to $Ax = b \iff \|b - A\widehat{x}\|^2 \le \|b - Ax\|^2$ for all $x \in C^n$ $\iff A\widehat{x} = \pi(b|\mathcal{R}(A)) = AA^+b$ $\iff A(\widehat{x} - A^+b) = 0 \iff \widehat{x} - A^+b \in \mathcal{N}(A)$ $\iff \widehat{x} \in A^+b + \mathcal{N}(A).$

Comment: $A^+b + \mathcal{N}(A) = A^+b + \mathcal{R}(I - A^+A) = \{A^+b + (I - A^+A)h : h \in C^n\}.$

(2) A relation Suppose Ax = b is consistent. Then

 \widehat{x} is a LSS to $Ax = b \iff \widehat{x}$ is an ordinary solution to Ax = b.

Pf: Ax = b is consistent $\Longrightarrow \exists x_0 \text{ such that } Ax_0 = b$.

- \Rightarrow : If \widehat{x} is a LSS to Ax = b, then $||b A\widehat{x}||^2 \le ||b Ax_0||^2 = 0$. So $A\widehat{x} = b$. Thus \widehat{x} is an ordinary solution to Ax = b.
- \Leftarrow : If \widehat{x} is an ordinary solution to Ax = b, $||b A\widehat{x}||^2 = 0 \le ||b Ax||^2$ for all x, So \widehat{x} is a LSS to Ax = b.
- (3) The collection of all solutions to consistent Ax = b is $A^+b + \mathcal{N}(A) = A^+b + \mathcal{R}(I A^+A) = \{A^+b + (I A^+A)h : h \in \mathbb{C}^n\}$.

Ex1: For regression $y = X\beta + \epsilon$ with $E(\epsilon) = 0$, $E(y) = X\beta \in \mathcal{R}(X)$. Define

 $\widehat{\beta}$ is a least square estimator LSE for $\beta \Longleftrightarrow \|y - X\widehat{\beta}\|^2 \le \|y - X\beta\|^2$ for all β .

Let $LSE(\beta)$ be the collection of all LSEs of β . Then

$$\widehat{\beta} \in LSE(\beta) \iff \widehat{\beta} \text{ is a LSS to } X\beta = y.$$

So LSE(β) = $X^+y + \mathcal{N}(X)$.

- 2. Minimum norm LSS
 - (1) Other expressions for the collection of all LSSs

Let x_0 be a LSS to Ax = b. Then $A^+b + \mathcal{N}(A) = x_0 + \mathcal{N}(A)$

Proof Note that x_0 is a LSS to $Ax = b \iff Ax_0 = \pi(b|\mathcal{R}(A)) \iff Ax_0 = AA^+b$.

$$\widehat{x} \in A^+b + \mathcal{N}(A) \Longrightarrow \widehat{x} = A^+b + z_1 \text{ where } z_1 \in \mathcal{N}(A).$$

So $\widehat{x} = x_0 + (A^+b - x_0 + z_1).$

But $A(A^+b - x_0 + z_n) = (AA^+b - Ax_0) + Az_1 = 0 + 0 = 0.$

Thus $A^+b - x_0 + z_1 \in \mathcal{N}(A)$. Hence $\widehat{x} \in x_0 + \mathcal{N}(A)$.

Comment: In terms of expressing the collection of all LSSs to Ax = b, the role of A^+b can be replaced by any LSS x_0 to Ax = b. But A^+b is special in the sense of (2) below.

(2) Minimum norm LSS

For Ax = b, A^+b is the minimum norm LSS.

Proof First
$$A^+b = A^+b + 0 \in A^+b + \mathcal{N}(A)$$
. So A^+b is a LSS to $Ax = b$.
Secondly for LSS \widehat{x} to $Ax = b$, $\widehat{x} \in A^+b + \mathcal{N}(A)$. So $\widehat{x} = A^+b + z$ where $z \in \mathcal{N}(A)$.
But $A^+b \in \mathcal{R}(A^+) = \mathcal{N}^{\perp}((A^+)^*) = \mathcal{N}^{\perp}(A)$. Thus $A^+b \perp z$.
By Pythagorean theorem

$$\|\widehat{x}\|^2 = \|A^+b + z\|^2 = \|A^+b\|^2 + \|z\|^2 \ge \|A^+b\|^2.$$

So A^+b is the minimum norm LSS to Ax = b.

- 2. Linear space restricted LSSs
 - (1) Definition and iff conditions

 $A \in C^{m \times n}$ and S is a subspace in C^n .

 \widehat{x} is a LSS to Ax = b restricted by $x \in \mathcal{S}$

$$\stackrel{def}{\iff} \widehat{x} \in \mathcal{S} \text{ and } ||b - A\widehat{x}||^2 \le ||b - Ax||^2 \text{ for all } x \in \mathcal{S}$$

 $\iff \widehat{x} \in \mathcal{S} \text{ and } A\widehat{x} = \pi(b \mid A\mathcal{S}).$

Comment: $AS = \{As : s \in S\}$ is a linear space.

(2) LSSs to Ax = b under Bx = 0

The collection of all LSSs to Ax = b under Bx = 0 is $[A(I - B^+B)]^+b + \mathcal{N}(A) \cap \mathcal{N}(B)$.

Proof
$$Bx = 0 \iff x \in \mathcal{N}(B) = \mathcal{R}(I - B^+B) = \{(I - B^+B)h : h \in C^n\} = \mathcal{S}.$$

So $A\mathcal{S} = A\mathcal{R}(I - B^+B) = \mathcal{R}(A(I - B^+B)).$ Thus

$$\widehat{x} \text{ is a LSS to } Ax = b \text{ under } Bx = 0$$

$$\iff \widehat{x} \in \mathcal{N}(B) \text{ and } A\widehat{x} = \pi(y|\mathcal{R}(A(I - B^+B))) = A[A(I - B^+B)]^+b$$

$$\iff \widehat{x} \in \mathcal{N}(B) \text{ and } A\{\widehat{x} - [A(I - B^+B)]^+b\} = 0$$

$$\iff \widehat{x} \in \mathcal{N}(B) \text{ and } \widehat{x} - [A(I - B^+B)]^+b \in \mathcal{N}(A)$$

$$\iff \widehat{x} \in \mathcal{N}(B) \text{ and } \widehat{x} \in [A(I - B^+B)]^+b + \mathcal{N}(A)$$

$$\iff \widehat{x} \in \{[A(I - B^+B)]^+b + \mathcal{N}(A)\} \cap \mathcal{N}(B)$$

$$\iff \widehat{x} \in [A(I - B^+B)]^+b + \mathcal{N}(A) \cap \mathcal{N}(B).$$

Ex2: With
$$B = 0$$
, $\mathcal{N}(B) = \mathcal{R}(I - B^+ B) = \mathcal{R}(I_n) = C^n$.
With $B = 0$, there is no restriction on x , $A(I - B^+ B) = A$ and $\mathcal{N}(A) \cap \mathcal{N}(B) = \mathcal{N}(A)$.
Thus $[A(I - B^+ B)]^+ b + \mathcal{N}(A) \cap \mathcal{N}(B) = A^+ b + \mathcal{N}(A)$.

L18: Matrix spaces

- 1. $\mathcal{R}(A, B)$
 - (1) A linear transformation

With $A \in C^{m \times p}$ and $B \in C^{q \times n}$, Y = f(X) = AXB is a linear transformation from $X \in C^{p \times q}$ to $Y \in C^{m \times n}$.

Proof $f(\alpha X + \beta Z) = A(\alpha X + \beta Z)B = \alpha(AXB) + \beta(AZB) = \alpha f(X) + \beta f(Z).$

(2) Range $\mathcal{R}(A, B)$

The range of the LT in (1)

$$\mathcal{R}(A, B) = \{AXB \in C^{m \times n} : X \in C^{p \times q}\}$$

is a subspace of $C^{m \times n}$.

Proof $Y_1, Y_2 \in \mathcal{R}(A, B) \Longrightarrow Y_1 = AX_1B$ and $Y_2 = AX_2B$ $\Longrightarrow \alpha Y_1 + \beta Y_2 = A(\alpha X_1 + \beta X_2)B \in \mathcal{R}(A, B)$. So $\mathcal{R}(A, B)$ is a subspace of $C^{m \times n}$.

(3) $\mathcal{R}(A, B) = \mathcal{R}(A, I_n) \cap \mathcal{R}(I_m, B).$

Proof \subset : $Y \in \mathcal{R}(A, B) \Longrightarrow Y = AXB = I_m(AX)B \in \mathcal{R}(I_m B)$ $Y \in \mathcal{R}(A, B) \Longrightarrow Y = AXB = A(XB)I_n \in \mathcal{R}(A, I_n).$ So $Y \in \mathcal{R}(A, I_n) \cap \mathcal{R}(I_m, B).$

 \supset : $Y \in \mathcal{R}(A, I_n) \cap \mathcal{R}(I_m, B) \Longrightarrow Y = AX_1I_n = I_mX_2B$. So $Y = AA^+AX_1I_n = AA^+I_mX_2B \in \mathcal{R}(A, B)$.

Ex1: With $A \in C^{m \times n}$, $\mathcal{R}(A) = \{Ax : x \in C^n\} = \{Ax1 : x \in C^{n \times 1}\} = \mathcal{R}(A, 1)$. Thus vector space $\mathcal{R}(A)$ is a special case of $\mathcal{R}(A, B)$.

- 2. $\mathcal{N}(A, B)$
 - (1) Kernel $\mathcal{N}(A, B)$.

For the LT in (1) of 1, the Kernel

$$\mathcal{N}(A, B) = \{ X \in C^{p \times q} : AXB = 0 \}$$

is closed under LCs and hence is a subspace of $C^{p\times q}$, also called the null space associated with A and B.

(2) $\mathcal{N}(A, B) = \mathcal{N}(A, I_q) + \mathcal{N}(I_p, B)$

Proof \subset : If $X \in \mathcal{N}(A, B)$, then AXB = 0. So

$$X = (I - A^{+}A)X + A^{+}AX(I - BB^{+}).$$

Here $(I-A^+A)X \in \mathcal{N}(A, I_q)$ since $A[(I-A^+A)X]I_q=0$; and $A^+AX(I-BB^+) \in \mathcal{N}(I_p, B)$ since $I_p[A^+AX(I-BB^+)]B=0$.

Thus $X \in \mathcal{N}(A, I_q) + \mathcal{N}(I_p, B)$.

 \supset : If $X \in \mathcal{N}(A, I_q) + \mathcal{N}(I_p, B)$, then $X = X_1 + X_2$ where $X_1 \in \mathcal{N}(A, I_q)$ and $X_2 \in \mathcal{N}(I_p, B)$.

Thus $AXB = A(X_1B)I_q + I_p(AX_2)B = 0 + 0 = 0$. So $X \in \mathcal{N}(A, B)$.

Ex2: With $A \in C^{m \times n}$,

 $\mathcal{N}(A) = \{x \in C^n : Ax = 0\} = \{x \in C^{n \times 1} : Ax1 = 0\} = \mathcal{N}(A, 1).$

Thus vector space $\mathcal{N}(A)$ is a special case of $\mathcal{N}(A, B)$.

3. Equivalent expressions

- (1) In $\mathcal{R}(A, B)$
 - (i) A can be replaced by AA^- , AA^+ , AA^* , $(A^+)^*$
 - (ii) B can be replaced by B^-B , B^+B , B^*B , $(B^+)^*$
 - (iii) A and B can be simultaneously replaced
 - **Proof** (i) We show $\mathcal{R}(A, B) = \mathcal{R}(AA^-, B)$. $\subset: Y \in \mathcal{R}(A, B) \Longrightarrow Y = AXB = AA^-(AX)B \in \mathcal{R}(AA^-, B)$. $\supset: Y \in \mathcal{R}(AA^-, B) \Longrightarrow Y = AA^+XB \in \mathcal{R}(A, B)$.
 - (ii) We show $\mathcal{R}(A, B) = \mathcal{R}(A, B^-B)$. $\subset: Y \in \mathcal{R}(A, B) \Longrightarrow Y = AXB = A(XB)B^-B \in \mathcal{R}(A, B^-B)$. $\supset: Y \in \mathcal{R}(A, B^-B) \Longrightarrow Y = A(XB^-)B \in \mathcal{R}(A, B)$.
 - (iii) We show $\mathcal{R}(A, B) = \mathcal{R}(AA^-, B^-B)$ $\mathcal{R}(A, B) = \mathcal{R}(AA^-, B) = \mathcal{R}(AA^-, B^-B).$
- (2) In $\mathcal{N}(A, B)$
 - (i) A can be replaced by A^-A , A^+A , A^*A , $(A^+)^*$
 - (ii) B can be replaced by BB^- , BB^+ , BB^* , $(B^+)^*$
 - (iii) A and B can be simultaneously replaced
 - **Proof** (i) We show $\mathcal{N}(A, B) = \mathcal{R}(A^-A, B)$. $\subset: X \in \mathcal{N}(A, B) \Longrightarrow AXB = 0 \Longrightarrow A^-AXB = 0 \Longrightarrow X \in \mathcal{N}(A^-A, B)$. $\supset: X \in \mathcal{N}(A^-A, B) \Longrightarrow A^-AXB = 0 \Longrightarrow AXB = 0 \Longrightarrow X \in \mathcal{N}(A, B)$.
 - (ii) We show $\mathcal{N}(A, B) = \mathcal{N}(A, BB^{-})$. $\subset: X \in \mathcal{N}(A, B) \Longrightarrow AXB = 0 \Longrightarrow A(XB)B^{-} = 0 \Longrightarrow X \in \mathcal{N}(A, BB^{-}B)$. $\supset: X \in \mathcal{N}(A, BB^{-}) \Longrightarrow AXBB^{-} = 0 \Longrightarrow AXB = 0 \Longrightarrow X \in \mathcal{N}(A, B)$.
 - (iii) We show $\mathcal{N}(A, B) = \mathcal{R}(A^-A, BB^-)$ $\mathcal{N}(A, B) = \mathcal{N}(A^-A, B) = \mathcal{N}(A^-A, BB^-).$
 - **Ex3:** $\mathcal{R}(AD_1, D_2B) \subset \mathcal{R}(A, B)$ since $Y \in \mathcal{R}(AD_1, D_2B) \Longrightarrow Y = A(D_1XD_2)B \in \mathcal{R}(A, B)$. Thus $\mathcal{R}(A, B) = \mathcal{R}(AA^-A, BB^-B) \subset \mathcal{R}(AA^-, B^-B) \subset \mathcal{R}(A, B)$. So $\mathcal{R}(A, B) = \mathcal{R}(AA^-, B^-B)$.
 - **Ex4:** $\mathcal{N}(A, B) \subset \mathcal{N}(D_1A, BD_2)$ since $X \in \mathcal{N}(A, B) \Longrightarrow AXB = 0 \Longrightarrow D_1AXBD_2 = 0 \Longrightarrow X \in \mathcal{N}(D_1A, BD_2).$ Thus $\mathcal{N}(A, B) \subset \mathcal{N}(A^-A, BB^-) \subset \mathcal{N}(AA^-A, BB^-B) = \mathcal{N}(A, B).$ So $\mathcal{N}(A, B) = \mathcal{N}(A^-A, BB^-).$
 - **Ex5:** $\mathcal{R}(A) = \mathcal{R}(A, 1) = \mathcal{R}((A^+)^*, 1) = \mathcal{R}((A^+)^*).$ $\mathcal{N}(A) = \mathcal{N}(A, 1) = \mathcal{N}(A^*A, 1) = \mathcal{N}(A^*A)$