
L17 Least square solutions

1. Least square solutions

(1) Definition of least square solutions
Regardless if Ax = b is consistent or inconsistent, define

x̂ is a least square solution (LSS) to Ax = b
def⇐⇒ ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x.

Then the collection of all LSSs to Ax = b is A+b+N (A).
Proof: x̂ is a LSS to Ax = b ⇐⇒ ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x ∈ Cn

⇐⇒ Ax̂ = π(b|R(A)) = AA+b
⇐⇒ A(x̂−A+b) = 0 ⇐⇒ x̂−A+b ∈ N (A)
⇐⇒ x̂ ∈ A+b+N (A).

Comment: A+b+N (A) = A+b+R(I −A+A) = {A+b+ (I −A+A)h : h ∈ Cn}.
(2) A relation

Suppose Ax = b is consistent. Then

x̂ is a LSS to Ax = b ⇐⇒ x̂ is an ordinary solution to Ax = b.

Pf: Ax = b is consistent=⇒ ∃x0 such that Ax0 = b.

⇒: If x̂ is a LSS to Ax = b, then ∥b−Ax̂∥2 ≤ ∥b−Ax0∥2 = 0. So Ax̂ = b.
Thus x̂ is an ordinary solution to Ax = b.

⇐: If x̂ is an ordinary solution to Ax = b, ∥b−Ax̂∥2 = 0 ≤ ∥b−Ax∥2 for all x,
So x̂ is a LSS to Ax = b.

(3) The collection of all solutions
to consistent Ax = b is A+b+N (A) = A+b+R(I−A+A) = {A+b+(I−A+A)h : h ∈ Cn}.

Ex1: For regression y = Xβ + ϵ with E(ϵ) = 0, E(y) = Xβ ∈ R(X). Define

β̂ is a least square estimator LSE for β ⇐⇒ ∥y −Xβ̂∥2 ≤ ∥y −Xβ∥2 for all β.

Let LSE(β) be the collection of all LSEs of β. Then

β̂ ∈ LSE(β) ⇐⇒ β̂ is a LSS to Xβ = y.

So LSE(β) = X+y +N (X).

2. Minimum norm LSS

(1) Other expressions for the collection of all LSSs
Let x0 be a LSS to Ax = b. Then A+b+N (A) = x0 +N (A)

Proof Note that x0 is a LSS to Ax = b ⇐⇒ Ax0 = π(b|R(A)) ⇐⇒ Ax0 = AA+b.

⊂: x̂ ∈ A+b+N (A) =⇒ x̂ = A+b+ z1 where z1 ∈ N (A).
So x̂ = x0 + (A+b− x0 + z1).
But A(A+b− x0 + zn) = (AA+b−Ax0) +Az1 = 0 + 0 = 0.
Thus A+b− x0 + z1 ∈ N (A). Hence x̂ ∈ x0 +N (A).
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⊃: x̂ ∈ x0 +N (A) =⇒ x̂ = x0 + z2 where z2 ∈ N (A).
So x̂ = A+b+ (x0 −A+b+ z2).
But A(x0 −A+b+ z2) = (Ax0 −AA+b) +Az2 = 0 + 0 = 0.
Thus x0 −A+b+ z2 ∈ N (A). Hence x̂ ∈ A+b+N (A).

Comment: In terms of expressing the collection of all LSSs to Ax = b, the role of A+b
can be replaced by any LSS x0 to Ax = b. But A+b is special in the sense of (2)
below.

(2) Minimum norm LSS
For Ax = b, A+b is the minimum norm LSS.

Proof First A+b = A+b+ 0 ∈ A+b+N (A). So A+b is a LSS to Ax = b.
Secondly for LSS x̂ to Ax = b, x̂ ∈ A+b+N (A). So x̂ = A+b+ z where z ∈ N (A).
But A+b ∈ R(A+) = N⊥((A+)∗) = N⊥(A). Thus A+b ⊥ z.
By Pythagorean theorem

∥x̂∥2 = ∥A+b+ z∥2 = ∥A+b∥2 + ∥z∥2 ≥ ∥A+b∥2.

So A+b is the minimum norm LSS to Ax = b.

2. Linear space restricted LSSs

(1) Definition and iff conditions
A ∈ Cm×n and S is a subspace in Cn.
x̂ is a LSS to Ax = b restricted by x ∈ S

def⇐⇒ x̂ ∈ S and ∥b−Ax̂∥2 ≤ ∥b−Ax∥2 for all x ∈ S
⇐⇒ x̂ ∈ S and Ax̂ = π(b | AS).

Comment: AS = {As : s ∈ S} is a linear space.

(2) LSSs to Ax = b under Bx = 0
The collection of all LSSs to Ax = b under Bx = 0 is [A(I −B+B)]+b+N (A) ∩N (B).

Proof Bx = 0 ⇐⇒ x ∈ N (B) = R(I −B+B) = {(I −B+B)h : h ∈ Cn} = S.
So AS = AR(I −B+B) = R(A(I −B+B)). Thus

x̂ is a LSS to Ax = b under Bx = 0
⇐⇒ x̂ ∈ N (B) and Ax̂ = π(y|R(A(I −B+B))) = A[A(I −B+B)]+b
⇐⇒ x̂ ∈ N (B) and A{x̂− [A(I −B+B)]+b} = 0
⇐⇒ x̂ ∈ N (B) and x̂− [A(I −B+B)]+b ∈ N (A)
⇐⇒ x̂ ∈ N (B) and x̂ ∈ [A(I −B+B)]+b+N (A)
⇐⇒ x̂ ∈ {[A(I −B+B)]+b+N (A)} ∩ N (B)
⇐⇒ x̂ ∈ [A(I −B+B)]+b+N (A) ∩N (B).

Ex2: With B = 0, N (B) = R(I −B+B) = R(In) = Cn.
With B = 0, there is no restriction on x, A(I −B+B) = A and N (A) ∩N (B) = N (A).
Thus [A(I −B+B)]+b+N (A) ∩N (B) = A+b+N (A).
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L18: Matrix spaces

1. R(A, B)

(1) A linear transformation
With A ∈ Cm×p and B ∈ Cq×n, Y = f(X) = AXB is a linear transformation from
X ∈ Cp×q to Y ∈ Cm×n.
Proof f(αX + βZ) = A(αX + βZ)B = α(AXB) + β(AZB) = αf(X) + βf(Z).

(2) Range R(A, B)
The range of the LT in (1)

R(A, B) = {AXB ∈ Cm×n : X ∈ Cp×q}

is a subspace of Cm×n.

Proof Y1, Y2 ∈ R(A, B) =⇒ Y1 = AX1B and Y2 = AX2B
=⇒ αY1 + βY2 = A(αX1 + βX2)B ∈ R(A, B). So R(A, B) is a subspace of Cm×n.

(3) R(A, B) = R(A, In) ∩R(Im, B).

Proof ⊂: Y ∈ R(A, B) =⇒ Y = AXB = Im(AX)B ∈ R(ImB)
Y ∈ R(A, B) =⇒ Y = AXB = A(XB)In ∈ R(A, In).
So Y ∈ R(A, In) ∩R(Im, B).

⊃: Y ∈ R(A, In) ∩R(Im, B) =⇒ Y = AX1In = ImX2B.
So Y = AA+AX1In = AA+ImX2B ∈ R(A, B).

Ex1: With A ∈ Cm×n, R(A) = {Ax : x ∈ Cn} = {Ax1 : x ∈ Cn×1} = R(A, 1).
Thus vector space R(A) is a special case of R(A, B).

2. N (A, B)

(1) Kernel N (A, B).
For the LT in (1) of 1, the Kernel

N (A, B) = {X ∈ Cp×q : AXB = 0}

is closed under LCs and hence is a subspace of Cp×q, also called the null space associated
with A and B.

(2) N (A, B) = N (A, Iq) +N (Ip, B)

Proof ⊂: If X ∈ N (A, B), then AXB = 0. So

X = (I −A+A)X +A+AX(I −BB+).

Here (I −A+A)X ∈ N (A, Iq) since A[(I −A+A)X]Iq = 0; and
A+AX(I −BB+) ∈ N (Ip, B) since Ip[A

+AX(I −BB+)]B = 0.
Thus X ∈ N (A, Iq) +N (Ip, B).

⊃: If X ∈ N (A, Iq) + N (Ip, B), then X = X1 + X2 where X1 ∈ N (A, Iq) and
X2 ∈ N (Ip, B).
Thus AXB = A(X1B)Iq + Ip(AX2)B = 0 + 0 = 0. So X ∈ N (A, B).

Ex2: With A ∈ Cm×n,
N (A) = {x ∈ Cn : Ax = 0} = {x ∈ Cn×1 : Ax1 = 0} = N (A, 1).
Thus vector space N (A) is a special case of N (A, B).
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3. Equivalent expressions

(1) In R(A, B)

(i( A can be replaced by AA−, AA+, AA∗, (A+)∗

(ii) B can be replaced by B−B, B+B, B∗B, (B+)∗

(iii) A and B can be simultaneously replaced

Proof (i) We show R(A, B) = R(AA−, B).
⊂: Y ∈ R(A, B) =⇒ Y = AXB = AA−(AX)B ∈ R(AA−, B).
⊃: Y ∈ R(AA−, B) =⇒ Y = AA+XB ∈ R(A, B).

(ii) We show R(A, B) = R(A, B−B).
⊂: Y ∈ R(A, B) =⇒ Y = AXB = A(XB)B−B ∈ R(A, B−B).
⊃: Y ∈ R(A, B−B) =⇒ Y = A(XB−)B ∈ R(A, B).

(iii) We show R(A, B) = R(AA−, B−B)
R(A, B) = R(AA−, B) = R(AA−, B−B).

(2) In N (A, B)

(i( A can be replaced by A−A, A+A, A∗A, (A+)∗

(ii) B can be replaced by BB−, BB+, BB∗, (B+)∗

(iii) A and B can be simultaneously replaced

Proof (i) We show N (A, B) = R(A−A, B).
⊂: X ∈ N (A, B) =⇒ AXB = 0 =⇒ A−AXB = 0 =⇒ X ∈ N (A−A, B).
⊃: X ∈ N (A−A, B) =⇒ A−AXB = 0 =⇒ AXB = 0 =⇒ X ∈ N (A, B).

(ii) We show N (A, B) = N (A, BB−).
⊂: X ∈ N (A, B) =⇒ AXB = 0 =⇒ A(XB)B− = 0 =⇒ X ∈ N (A, BB−B).
⊃: X ∈ N (A, BB−) =⇒ AXBB− = 0 =⇒ AXB = 0 =⇒ X ∈ N (A, B).

(iii) We show N (A, B) = R(A−A, BB−)
N (A, B) = N (A−A, B) = N (A−A, BB−).

Ex3: R(AD1, D2B) ⊂ R(A, B) since
Y ∈ R(AD1, D2B) =⇒ Y = A(D1XD2)B ∈ R(A, B).
Thus R(A, B) = R(AA−A, BB−B) ⊂ R(AA−, B−B) ⊂ R(A, B).
So R(A, B) = R(AA−, B−B).

Ex4: N (A, B) ⊂ N (D1A, BD2) since
X ∈ N (A, B) =⇒ AXB = 0 =⇒ D1AXBD2 = 0 =⇒ X ∈ N (D1A, BD2).
Thus N (A, B) ⊂ N (A−A, BB−) ⊂ N (AA−A, BB−B) = N (A, B).
So N (A, B) = N (A−A, BB−).

Ex5: R(A) = R(A, 1) = R((A+)∗, 1) = R((A+)∗).
N (A) = N (A, 1) = N (A∗A, 1) = N (A∗A)
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