L15: $\mathcal{R}(A)$, $\mathcal{N}(A)$ and their relations

1. $\mathcal{R}(A)$

(1) A subspace of C^m : $\mathcal{R}(A)$ y = Ax with $A \in C^{m \times n}$ is a linear transformation (LT) from $x \in C^n$ to $y \in C^m$. The range of this LT

$$\mathcal{R}(A) = \{Ax : x \in C^n\}$$

is closed under LCs and hence is a LS in C^m with $\dim[\mathcal{R}(A)] = \operatorname{rank}(A)$. $\mathcal{R}(A)$ is the span of the columns of A also denoted as $\mathcal{C}(A)$, $\mathcal{S}(A)$ or L(A) for a LS from A.

Ex1: In linear regression $y = X\beta + \epsilon$ with $E(\epsilon) = 0$, $E(y) = X\beta$. We can say now, E(y) is a LT of unknown β and lies in a known space $\mathcal{R}(A)$ with dimension rank(A).

(2) $\mathcal{R}(A) = \mathcal{R}(AA^{-})$

 $\subset: y \in \mathcal{R}(A) \Longrightarrow y = Ax = AA^{-}(Ax) \text{ for some } x \Longrightarrow y \in \mathcal{R}(AA^{-}).$

 $\supset: y \in \mathcal{R}(AA^-) \Longrightarrow y = AA^-x = A(A^-x) \text{ for some } x \Longrightarrow y \in \mathcal{R}(A).$

Comment: $\mathcal{R}(A) = \mathcal{R}(AA^{-}) = \mathcal{R}(AA^{+})$. Properties of AA^{-} and AA^{+} .

(3) $\mathcal{R}(A) = \mathcal{R}(AA^*)$

Pf: Note that $\mathcal{R}(AB) \subset \mathcal{R}(A)$ since $y \in \mathcal{R}(AB) \Longrightarrow y = ABx = A(Bx) \in \mathcal{R}(A)$. So $\mathcal{R}(A) = \mathcal{R}(AA^+A) = \mathcal{R}(AA^*(A^+)^*) \subset \mathcal{R}(AA^*) \subset \mathcal{R}(A)$.

 $(4) \ \mathcal{R}(A) = \mathcal{R}((A^+)^*)$

This can be proved by either the method in (2) or in (3).

(5) Summary

 $\mathcal{R}(A) = \{y = Ax : x\} = \mathcal{C}(A) = \mathcal{S}(A) = L(A)$ is a subspace in C^m . The member of this space y is determined by its structure y = Ax.

$$\mathcal{R}(A) = \mathcal{R}(AA^*) = \mathcal{R}(AA^-) = \mathcal{R}((A^*)^+).$$

Ex2: $\mathcal{R}(A^*) = \mathcal{R}((A^{**})^+) = \mathcal{R}(A^+).$ $\mathcal{R}(A^+) = \mathcal{R}(A^+(A^+)^+) = \mathcal{R}(A^+A).$ So $\mathcal{R}(A^*) = \mathcal{R}(A^+) = \mathcal{R}(A^+A).$

2. $\mathcal{N}(A)$

(1) A subspace of C^n : $\mathcal{N}(A)$

For LT y = f(x) = Ax, the Kernel, Kernel $(f) = \{x : f(x) = 0\}$, is also called the null of space of A,

$$\mathcal{N}(A) = \{x \in C^n : Ax = 0\}.$$

 $\mathcal{N}(A)$ is a subspace of \mathbb{C}^n with $\dim[\mathcal{N}(A)] = n - \operatorname{rank}(A)$.

Proof If $u, v \in \mathcal{N}(A)$, then Au = 0 and Av = 0. Hence $A(\alpha u + \beta v) = \alpha Au + \beta Av = 0$. thus $\alpha u + \beta v \in \mathcal{N}(A)$.

Ex3: The collection of all solutions to the equation Ax = 0 form a linear space in C^n , $\mathcal{N}(A)$.

(2) $\mathcal{N}(A) = \mathcal{N}(A^-A)$.

 $\subset : x \in \mathcal{N}(A) \Longrightarrow Ax = 0 \Longrightarrow A^{-}Ax = 0 \Longrightarrow x \in \mathcal{N}(A^{-}A).$

 $\supset: x \in \mathcal{N}(A^-A) \Longrightarrow A^-Ax = 0 \Longrightarrow Ax = AA^-Ax = 0 \Longrightarrow x \in \mathcal{N}(A).$

Comment: $\mathcal{N}(A) = \mathcal{N}(A^-A) = \mathcal{N}(A^+A)$. Properties of A^-A and A^+A .

1

(3)
$$\mathcal{N}(A) = \mathcal{N}(A^*A)$$

Proof Note that $\mathcal{N}(A) \subset \mathcal{N}(BA)$ since $Ax = 0 \Longrightarrow BAx = 0$. So $\mathcal{N}(A) \subset \mathcal{N}(A^*A) \subset \mathcal{N}((A^+)^*A^*A) = \mathcal{N}(A)$.

- (4) $\mathcal{N}(A) = \mathcal{N}((A^+)^*)$ This can be proved by either the method in (2) or the method in (3).
- (5) Summary $\mathcal{N}(A) = \{x : Ax = 0\}$ is a subspace of C^n . Its member x is determined by its property

$$\mathcal{N}(A) = \mathcal{N}(A^*A) = \mathcal{N}(A^-A) = \mathcal{N}(A^+A) = \mathcal{N}((A^+)^*).$$

Ex4:
$$\mathcal{N}(A^*) = \mathcal{N}((A^{**})^+) = \mathcal{N}(A^+)$$
 $\mathcal{N}(A^+) = \mathcal{N}((A^+)^+A^+) = \mathcal{N}(AA^+)$.

3. Cross expressions

Ax = 0.

(1) Lemma I

If D is idempotent, i.e., $D^2 = D$, then $\mathcal{R}(D) = \mathcal{N}(I - D)$.

Proof: \subset : $y \in \mathcal{R}(D) \Longrightarrow y = Dx \Longrightarrow (I - D)y = Dx - D^2x = 0 \Longrightarrow y \in \mathcal{N}(I - D)$. \supset : $x \in \mathcal{N}(I - D) \Longrightarrow (I - D)x = 0 \Longrightarrow x = Dx \in \mathcal{R}(D)$.

(2) Lemma II

If $D^2 = D$, then $\mathcal{N}(D) = \mathcal{R}(I - D)$.

Proof: If $D^2 = D$, then $(I - D)^2 = (I - D)(I - D) = I - D - D + D^2 = I - D$. By (1), $\mathcal{R}(I - D) = \mathcal{N}(I - (I - D)) = \mathcal{N}(D)$. Thus $\mathcal{N}(D) = \mathcal{R}(I - D)$.

- (3) $\mathcal{R}(A) = \mathcal{N}(\cdot)$ $\mathcal{R}(A) = \mathcal{R}(AA^-) = \mathcal{N}(I_m - AA^-)$ $\mathcal{R}(A) = \mathcal{R}(AA^+) = \mathcal{N}(I_m - AA^+).$
- $(4) \mathcal{N}(A) = \mathcal{R}(\cdot)$ $\mathcal{N}(A) = \mathcal{N}(A A) = \mathcal{R}(A A) = \mathcal{N}(A -$

 $\mathcal{N}(A) = \mathcal{N}(A^-A) = \mathcal{R}(I_n - A^-A)$ $\mathcal{N}(A) = \mathcal{N}(A^+A) = \mathcal{R}(I_n - A^+A).$

Ex5: $\mathcal{R}(A^*) = \mathcal{R}(A^+) = \mathcal{R}(A^+A) = \mathcal{N}(I_n - A^+A)$ $\mathcal{N}(A^*) = \mathcal{N}(A^+) = \mathcal{N}(AA^+) = \mathcal{R}(I_m - AA^+).$

Comment: The collection of all solutions to Ax = 0 is

$$\mathcal{N}(A) = \mathcal{N}(A^+A) = \mathcal{R}(I - A^+A) = \mathcal{R}(B)$$

where the columns of $B \in C^{m \times r}$ form a basis of $\mathcal{R}(I - A^+ A)$ and r = n - rank(A).

Ex6: Consider Ax = 0 where A = (1, 2).

$$A = (1, 2) \Longrightarrow A^{+} = \frac{1}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Longrightarrow A^{+}A = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \Longrightarrow I - A^{+}A = \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}.$$

$$\mathcal{R}\begin{bmatrix} \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} \end{bmatrix} = \mathcal{R}\begin{bmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \end{bmatrix} = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} h : h \in C \right\} \text{ gives all solutions.}$$

L16: Orthogonal complements, projections and projectin matrices

- 1. Orthogonal complement $\mathcal{R}^{\perp}(A)$
 - (1) Inner product, norm and angle For $x, y \in C^m$, $\langle x, y \rangle = y^*x = \sum_i x_i \overline{y}_i$ is Frobenius inner product of x and y. With induced norm $\|x\| = \sqrt{\langle x, x \rangle}$, the angle formed by x and y is $\theta \in [0, \pi]$ such that $\cos(\theta) = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$. So x and y perpendicular $\iff x \perp y \iff \langle x, y \rangle = 0$.
 - (2) $\mathcal{R}^{\perp}(A)$ The collection of all z perpendicular to $\mathcal{R}(A)$ is the orthogonal complement of $\mathcal{R}(A)$ denoted as $\mathcal{R}^{\perp}(A)$

$$\mathcal{R}^{\perp}(A) = \{ z \in C^m : z \perp \mathcal{R}(A) \} = \{ z \in C^m : \langle z, y \rangle = 0 \text{ for all } y \in \mathcal{R}(A) \}.$$

- (3) $\mathcal{R}^{\perp}(A)$ is a subspace of C^m .
 - **Proof** If $u, v \in \mathcal{R}^{\perp}(A)$, then $\langle u, y \rangle = 0$ and $\langle v, y \rangle = 0$ for all $y \in \mathcal{R}(A)$. So $\langle \alpha u + \beta v, y \rangle = \alpha \langle u, y \rangle + \beta \langle v, y \rangle = 0$. Thus $\alpha u + \beta v \in \mathcal{R}^{\perp}(A)$. Therefore $\mathcal{R}^{\perp}(A)$ is a subspace of C^m .
- (4) $\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*).$ **Proof** $z \in \mathcal{R}^{\perp}(A) \iff z \perp \mathcal{R}(A) \iff z \perp y \text{ for all } y \in \mathcal{R}(A)$ $\iff z \perp Ax \text{ for all } x \in C^n \iff \langle z, Ax \rangle = 0 \text{ for all } x$ $\iff x^*A^*z = 0 \text{ for all } x \iff A^*z = 0 \iff z \in \mathcal{N}(A^*).$
- (5) $\mathcal{R}^{\perp}(A) = \mathcal{N}(A^*) = \mathcal{N}(A^+) = \mathcal{N}(AA^+) = \mathcal{R}(I AA^+).$ **Ex1:** $\mathcal{R}^{\perp}(A^*) = \mathcal{N}(A); \quad \mathcal{R}^{\perp}(A^+) = \mathcal{N}((A^+)^*) = \mathcal{N}(A)$ So $\mathcal{R}^{\perp}(A^*) = \mathcal{R}^{\perp}(A^+) = \mathcal{N}(A) = \mathcal{N}(A^+A) = \mathcal{R}(I - A^+A).$
- 2. Orthogonal complement $\mathcal{N}^{\perp}(A)$
 - (1) Definition of $\mathcal{N}^{\perp}(A)$ The orthogonal complement of $\mathcal{N}(A)$ is

$$\mathcal{N}^{\perp}(A) = \{ z \in C^n : z \perp \mathcal{N}(A) \} = \{ z \in C^n : z \perp x \text{ for all } x \in \mathcal{N}(A) \}.$$

- (2) $\mathcal{N}^{\perp}(A) = \mathcal{R}^{\perp}(I A^{+}A)$ **Proof** $\mathcal{N}^{\perp}(A) = \{z \in C^{n} : z \perp \mathcal{N}(A)\}$ $= \{z \in C^{n} z \perp \mathcal{R}(I - A^{+}A)\} = \mathcal{R}^{\perp}(I - A^{+}A).$
- (3) $\mathcal{N}^{\perp}(A) = \mathcal{R}(A^*)$ **Proof** $\mathcal{N}^{\perp}(A) = \mathcal{R}^{\perp}(I - A^+A) = \mathcal{N}(I - A^+A) = \mathcal{R}(A^+A) = \mathcal{R}(A^*).$
- (4) $\mathcal{N}^{\perp}(A) = \mathcal{R}^{\perp}(I A^{+}A) = \mathcal{N}(I A^{+}A) = \mathcal{R}(A^{+}A)$ **Ex2:** $\mathcal{N}^{\perp}(A^{*}) = \mathcal{R}(A); \quad \mathcal{N}^{\perp}(A^{+}) = \mathcal{R}((A^{+})^{*}) = \mathcal{R}(A)$ So $\mathcal{N}^{\perp}(A^{*}) = \mathcal{N}^{\perp}(A^{+}) = \mathcal{R}(A) = \mathcal{N}(I - AA^{+}) = \mathcal{R}^{\perp}(I - AA^{+}).$

Ex3: Show that Ax and $(I - AA^+)y$ are perpendicular.

(i) Direct computation: $\langle Ax, (I-AA^+)y \rangle = [(I-AA^+)y]^*Ax = y^*(I-AA^+)Ax = y^*(A-A)x = 0.$

(ii) By concepts:
$$Ax \in \mathcal{R}(A)$$
 and $(I - AA^+)y \in \mathcal{R}(I - AA^+) = \mathcal{N}(AA^+) = \mathcal{N}(A^*) = \mathcal{R}^{\perp}(A)$. So $Ax \perp (I - AA^+)y$.

- 3. Projections and projection matrices
 - (1) Pythagorean theorem

If
$$x \perp y$$
, then $||x \pm y||^2 = ||x||^2 + ||y||^2$.
Proof $||x \pm y||^2 = \langle x \pm y, x \pm y \rangle = \langle x, x \rangle \pm \langle x, y \rangle \pm \langle y, x \rangle + \langle y, y \rangle$
 $= ||x||^2 \pm 0 \pm 0 + ||y||^2 = ||x||^2 + ||y||^2$.

(2) Projection S is a subspace in C^k , for $y \in C^k$ there exists a unique $\widehat{y} \in S$ such that

$$||y - \hat{y}||^2 \le ||y - z||^2$$
 for all $z \in S$.

This \widehat{y} is the projection of y onto S denoted as $\pi(y|S)$. Thus $\pi(y|\mathcal{R}(A))$, $\pi(y|\mathcal{R}^{\perp}(A))$, $\pi(x|\mathcal{N}(A))$ and $\pi(x|\mathcal{N}^{\perp}(A))$ are all defined.

(3) Lemma If $\hat{y} \in S$ and $y - \hat{y} \in S^{\perp}$, then $\hat{y} = \pi(y|S)$.

Proof $\widehat{y} \in S$. For $z \in S$, with $y - \widehat{y} \in S^{\perp}$ and $\widehat{y} - z \in S$, $(y - \widehat{y}) \perp (\widehat{y} - z)$. By Pythagorean theorem

$$||y - z||^2 = ||(y - \widehat{y}) + (\widehat{y} - z)||^2 = ||y - \widehat{y}||^2 + ||\widehat{y} - z||^2 \ge ||y - \widehat{y}||^2.$$

So $\widehat{y} = \pi(y|S)$.

(4) $\pi(y|\mathcal{R}(A)) = AA^+y$. AA^+ is the projection matrix onto $\mathcal{R}(AA^+) = \mathcal{R}(A)$.

Proof $AA^+y \in \mathcal{R}(AA^+) = \mathcal{R}(A)$.

$$y - AA^+y = (I - AA^+)y \in \mathcal{R}(I - AA^+) = \mathcal{N}(AA^+) = \mathcal{N}(A^+) = \mathcal{R}^{\perp}(A)$$
.
By Lemma in (3), $\pi(y|\mathcal{R}(A)) = AA^+y$.

Comment: AA^+ is called the projection matrix onto $\mathcal{R}(AA^+) = \mathcal{R}(A)$.

(5) Projections onto other spaces

$$\pi(y|\mathcal{R}^{\perp}(A)) = \pi(y|\mathcal{R}(I - AA^{+})) = (I - AA^{+})y.$$

$$I - AA^{+} \text{ is the projection matrix onto } \mathcal{R}(I - AA^{+}) = \mathcal{R}^{\perp}(A).$$

$$\pi(x|\mathcal{N}(A)) = \pi(x|\mathcal{R}(I - A^{+}A)) = (I - A^{+}A)x.$$

$$I - A^{+}A \text{ is the projection matrix onto } \mathcal{R}(I - A^{+}A) = \mathcal{N}(A).$$

$$\pi(x|\mathcal{N}^{\perp}(A)) = \pi(x|\mathcal{R}(A^{+}A)) = A^{+}Ax.$$

$$A^{+}A \text{ is the projection matrix onto } \mathcal{R}(A^{+}A) = \mathcal{N}^{\perp}(A).$$

Comment: For given $x_0 \in C^n$ and $A \in C^{m \times n}$, the collection of all solutions to Ax = 0 is $\mathcal{N}(A)$. Among all solutions, the one with minimum distance to x_0 is $\pi(x_0|\mathcal{N}(A))$.

$$\pi(x_0|\mathcal{N}(A)) = \pi(x_0|\mathcal{R}(I - A^+A)) = (I - A^+A)x_0.$$

Ex4: With
$$A = (1, 2)$$
 and $x_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $A = (1, 2) \Longrightarrow A^+ = \frac{1}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Longrightarrow A^+ A = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \Longrightarrow I - A^+ A = \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}.$

$$(I - A^+ A)x_0 = \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$