L15: R(A), N(A) and their relations
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2. N(A
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A subspace of C™: R(A)
y = Ax with A € C™*" is a linear transformation (LT) from x € C™ to y € C™. The
range of this LT

R(A) ={Ax: z € C"}

is closed under LCs and hence is a LS in C™ with dim[R(A)] = rank(A4). R(A) is the

span of the columns of A also denoted as C(A), S(A) or L(A) for a LS from A.

Ex1: In linear regression y = X +¢€ with E(e) =0, E(y) = X3. We can say now, E(y)
is a LT of unknown /3 and lies in a known space R(A) with dimension rank(A).

R(A) =R(AA™)

C:ye R(A) = y= Az = AA™ (Ax) for some z =y € R(AA™).

D ye R(AA™) = y=AA "z = A(A™x) for some x = y € R(A).

Comment: R(A) = R(AA™) = R(AAT). Properties of AA~ and AA™.

R(A) = R(AAY)

Pf: Note that R(AB) C R(A) since y € R(AB) = y = ABx = A(Bz) € R(A). So
R(A) = R(AATA) = R(AA*(AT)*) C R(AA*) C R(A).

R(A) = R((A")")

This can be proved by either the method in (2) or in (3).

Summary

R(A) ={y=Az: 2} =C(A) = S(A) = L(A) is a subspace in C™. The member of this

space y is determined by its structure y = Ax.

R(A) = R(AA*) = R(AA™) = R ((A*)T).

Ex2: R(A*) = R((A*)T) = R(A™). R(AT) = R(AT(AT)T) = R(ATA).
So R(A*) = R(A1) = R(ATA).

)

A subspace of C": N'(A)

For LT y = f(z) = Az, the Kernel, Kernel(f) = {z : f(x) = 0}, is also called the null

of space of A,

N(A) ={zeC": Az = 0}.

N(A) is a subspace of C™ with dim[N(A)] = n — rank(A).

Proof If u, v € N(A), then Au = 0 and Av = 0. Hence A(au+ fv) = aAu+ fAv = 0.
thus au + fv € N(A).

Ex3: The collection of all solutions to the equation Az = 0 form a linear space in C",
N(A).

N(A)=N(A"A).

CtrxeNA) = Az=0= A" Ar =0=z € N(A™A).

DrxeN(AA) = A Az =0= Az = AA Az = 0=z € N(4).

Comment: N (A) =N(A"A) =N(ATA). Properties of A=A and AT A.



(3) N(A) = N(4*4)
Proof Note that N (A) C N(BA) since Az =0 = BAz =0.
So N(A) C N(A*A) C N((AT)*A*A) = N(A).
(4) N(4) =N((4)")
This can be proved by either the method in (2) or the method in (3).
(5) Summary

N(A) ={z:
Ax = 0.

N(A) = N(A*A) = N (A~ A) = N(A+A) = N ((AT)").
Exd: N(A*) = N((A™)) = N(AY)  N(A') = N((AH)HAT) = N(AA).

3. Cross expressions

Az = 0} is a subspace of C™. Its member x is determined by its property

(1) Lemma I
If D is idempotent, i.e., D?> = D, then R(D) = N'(I — D).
Proof: C: ye R(D) = y=Dx = (I - D)y =Dz — D?’x=0=y € N(I — D).
D:xeN(I—-D)= (I -D)x=0= x=Dx e R(D).

If D? = D, then N (D) = R(I — D).

Proof: If D2 = D, then (I —D)2=(I—-D)(I-D)=I—-D—-D+D?>=1—D.
By (1), R(I — D) = N (I — (I — D)) = N(D). Thus N(D) = R(I — D).
(3) R(A) = ()
R(A) = R(AA™) = N(I, — AA™)  R(A) = R(AAT) = N(I,, — AA™).
(4) N(4) =R()
N(A) =N(AA) =R(I, — A=A)  N(A) = N(ATA) = R(I, — AT A).
Ex5: R(A*) = R(A') = R(ATA) = N (I, — AT A).
N(A*) = N(AT) = N(AAY) = R(I,, — AAT).

Comment: The collection of all solutions to Az = 0 is

N(A) =N(ATA) =R(I - ATA) = R(B)

where the columns of B € C"™*" form a basis of R(I — AT A) and r = n — rank(A)
Ex6: Consider Az = 0 where A = (1, 2).

A:(1,2):>A+=;G s AtA=

(D)=

1 2 N 4 -2
) )= r-ara=i(4 7).
h:he

} gives all solutions.



L16: Orthogonal complements, projections and projectin matrices

1. Orthogonal complement R+ (A)

(1) Inner product, norm and angle
For z,y € C™, (x,y) = y*v = ), x;y; is Frobenius inner product of  and y. With
induced norm ||z|| = +/(z, ), the angle formed by x and y is § € [0, 7] such that

cos(f) = % So z and y perpendicular<= z L y <= (z, y) = 0.
(2) R*(4)

The collection of all z perpendicular to R(A) is the orthogonal complement of R(A)
denoted as R+(A)

REA) ={z€C™: 2 LR(A)}={2€C™: (z,y) =0 for all y € R(A)}.

(3) RY(A) is a subspace of C™.
Proof If u, v € R+ (A), then (u, y) = 0 and (v, y) = 0 for all y € R(A).
So (au + Bv, y) = alu, y) + B(v, y) = 0. Thus au + Bv € RH(A).
Therefore R (A) is a subspace of C™.
(4) RH(A) = N(AY).
Proof z € R (A) <= 2z 1 R(A) <=z Lyforall y € R(A)
<= zlAzforallz € C" < (z, Az) =0 for all =
— z*A*z=0forall x <= A*2 =0 < z € N(4%).
(5) RH(A) = N(A*) = N(AT) = N(AAT) = R(I — AAY).
Ex1: RH(A%) = N(A); RHAT) =N((A1)*) = N(4)
So RH(A*) = RH(AT) = N(A) = N(ATA) = R(I — AT A).
2. Orthogonal complement N (A)

(1) Definition of N+ (A)
The orthogonal complement of N'(A) is

NEA) ={ze€C": 2 LN(A)} ={z€C": z Lz forall z € N(A)}.

(2) N+(A) =RE(I - AT A)
Proof N+(A) = {ze€C": 2z L N(A)}
= {2€C"z LR(I—-ATA)} =R - AT A).

(3) N*H(A) = R(AY)

Proof N1 (A) =RE(I — ATA) = N(I — ATA) = R(ATA) = R(A*).
(4) NH(A) =RE-I — ATA) = N(I — AT A) = R(ATA)

Ex2: N1(AY) =R(A4); NHAT) =R(AT)*) = R(A)

So NL(A*) = NH(AT) = R(A) = N(I — AAT) = R+(I — AAT).
Ex3: Show that Az and (I — AA™)y are perpendicular.

(i) Direct computation:
(Az, (I — AAT)y) = [(I — AAT)y|* Az = y*(I — AAT)Az = y*(A— A)xz = 0.



(ii) By concepts:
Az € R(A) and (I — AAT)y € R(I — AAT) = N(AAT) = N(A*) = RH(A).
So Az L (I — AA1)y.

3. Projections and projection matrices

(1) Pythagorean theorem
If 2 Ly, then [jz £ y||* = ||z[|* + [|ly|*.
Proof |z +y|* = (r+y,axy)=(z, )+ (z,y) £ (y, 2) + (v, y)
= |lzl?£0£0+[lyll* = [l=|> + [[y]*.
(2) Projection
S is a subspace in C¥, for y € C* there exists a unique 3 € S such that

ly — 7l* < |ly — 2||? for all z € S.

This ¥ is the projection of y onto S denoted as 7(y|S5).
Thus 7(y|R(A)), 7(y|R+(A)), 7(z|N(A)) and 7(z|N1(A)) are all defined.
(3) Lemma
IfyeSandy—7ye St then y = n(y|9).
Proof j€ S. Forz¢€ S, withy —ge€ Standy—2¢€ S, (y—7) L (¥ —2).
By Pythagorean theorem

I

ly =211 = Iy =9) + @ = I = lly = lI* + 7 = 2II* > lly - 7]I*.

So y = m(y|9).
(4) m(y|R(A)) = AATy. AAT is the projection matrix onto R(AA") = R(A).
Proof AATy € R(AAT) =R(A).
y— AATy = (I — AAY)y € R(I — AAT) = N(AAT) = N(AY) = RE(A).
By Lemma in (3), 7(y|R(A)) = AATy.
Comment: AAT is called the projection matrix onto R(AA') = R(A).
(5) Projections onto other spaces
T(y|RH(A)) = m(y|R(I — AA*)) = (I — AA*)y.
I — AA™ is the projection matrix onto R(I — AAT) = R+ (A).
m(z|N(A)) = w(x|R(I — ATA)) = (I — AT A)z.
I — AT A is the projection matrix onto R(I — ATA) = N (A).
(2Nt (A)) = n(z|R(ATA)) = AT Ax.
AT A is the projection matrix onto R(ATA) = N+(A).

Comment: For given xg € C™ and A € C™*", the collection of all solutions to Az = 0 is
N(A). Among all solutions, the one with minimum distance to xg is 7(zo|N(A)).

m(zo|N(A)) = m(zo|R(I — ATA)) = (I — AT A)y.
Ex4: With A = (1, 2) and 29 = (1)

1 1 2 4 -2
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