
L13 Moore-Penrose inverses

1. Moore-Penrose inverse

(1) Moore-Penrose inverse
For A ∈ Cm×n matrix G ∈ Cn×m satisfying the following four Penrose conditions exists,
is unique, and is called the Moore-Penrose inverse of A denoted by A+.

(i) AGA = A (ii) GAG = G (iii) (AG)∗ = GB (iv) (GA)∗ = GA.

Proof Suppose by SVD A = U

(
∆ 0
0 0

)
V ∗. We show that

G satisfying the four Penrose conditions ⇐⇒ G = V

(
∆−1 0
0 0

)
U∗.

⇒: (i) AGA = A =⇒ G ∈ A− =⇒ G = V

(
∆−1 H12

H21 H22

)
U∗.

(iii) AG is Hermitian =⇒ U

(
Ir ∆H12

0 0

)
U∗ is Hermitian. So H12 = 0.

(iv) GA is Hermitian =⇒ V

(
Ir 0

H21∆ 0

)
V ∗ is Hermitian. So H21 = 0.

(ii) GAG = G =⇒ H22 = 0. Hence G = V

(
∆−1 0
0 0

)
U∗.

⇐: (i) AGA = U

(
∆ 0
0 0

)
V ∗ = A. (ii) GAG = V

(
∆−1 0
0 0

)
U∗ = G.

(iii) AG = U

(
I 0
0 0

)
U∗ is Hermitian. (iv) GA = V

(
I 0
0 0

)
V ∗ is Hermitian.

Hence G satisfying the four Penrose conditions.

Comments: A+ ∈ A−. For SVD A = U

(
∆ 0
0 0

)
V ∗, A+ = V

(
∆−1 0
0 0

)
U∗ is SVD

for A+. rank(A+) = rank(A).

(2) 0+m×n = 0n×m; With α ̸= 0, (αA)+ = 1
αA

+

Proof For the first one let G = 0n×m. Check (iii) only.
(iii) 0m×nG = 0m×m is real symmetric and hence is Hermitian;
For the second one let G = 1

αA
+. Check (iv) only.

(iv) G(αA) = 1
αA

+αA = A+A is Hermitian.

(3) (A′)+ = (A+)′, (A)+ = A+, (A∗)+ = (A+)∗ and (A+)+ = A

Proof For the 1st one let G = (A+)′. Check (i): A′GA′ = A′(A+)′A′ = (AA+A)′ = A′.
For the 2nd one let G = A+. Check (ii): GAG = A+AA+ = A+AA+ = A+.
For the 3rd one let G = (A+)∗. Check (iii): A∗G = A∗(A+)∗ = (A+A)∗ is Hermitian.
For the last one let G = A. Check (iv): GA+ = AA+ is Hermitian.

Ex1: For column vector 0 ̸= x ∈ Cn, x+ = x∗

∥x∥2 .

Check (i) and (ii). (i): x x∗

∥x∥2x = x, (ii) x∗

∥x∥2x
x∗

∥x∥2 = x∗

∥x∥2 .

Comment: (x′)+ = (x+)′ = (x′)∗

∥x∥2 .
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2. More special cases

(1) If A ∈ Cm×n has full row rank, then AA∗ ∈ Cm×m is non-singular.
Then A+ = A∗(AA∗)−1.

Proof Let G = A∗(AA∗)−1. Only check (i).
(i) AGA = A[A∗(AA∗)−1]A = A.

(2) If A ∈ Cm×n has full column rank, then A∗A ∈ Cn×n is non-singular.
Then A+ = (A∗A)−1A∗.

Proof Let G = (A∗A)−1A∗. Only check (ii).
(ii) GAG = [(A∗A)−1A∗]A[(A∗A)−1A∗] = (A∗A)−1A∗ = G.

(3) If A has orthonormal columns, i.e., A∗A = I, then A+ = A∗

Proof Let G = A∗. Only check iii). (iii) AG = AA∗ is Hermitian.

(4) If A has orthonormal rows, i.e., (A′)∗A′ = I ⇐⇒ AA∗ = I, then A+ = A∗.

Proof Let G = A∗. Only check (iv). (iv) GA = A∗A is Hermitian.

(5) If A∗ = A = A2, then A+ = A.

Proof Let G = A. Only check (i). (i) AGA = AAA = A.

3. Special cases of (AB)+ = B+A+

(1) (AB)+ ̸= B+A+.

For A = (1, 2) and B =

(
1
0

)
, (AB)+ = 1+ = 1. But B+A+ = (1, 0)

(
1
2

)
/5 = 1

5 .

(2) If AB = 0, then (AB)+ = B+A+.

Proof If AB = 0, then (AB)+ = 0+ = 0. On the other hand,
B+A+ = B+BB+A+AA+ = B+(B+)∗(AB)∗(A+)∗A∗ = 0.

(3) If A has orthonormal columns, i.e., A∗A = I, then (AB)+ = B+A+

Proof Let G = B+A+ = BA∗. Only check (iii).
(iii) ABG = ABB+A∗ = A(BB+)A∗ is Hermitian.

(4) If B has orthonormal rows, i.e., BB∗ = I, then (AB)+ = B+A+

Proof Let G = B+A+ = B∗A+. Only check (ii).
(ii) GABG = (B∗A+)AB(B∗A+) = B∗A+AA+ = B+A+ = G.

(5) If A has full column rank and B has full row rank, then (AB)+ = B+A+.

Proof A has full column rank =⇒ A+ ∈ A− = AL =⇒ A+A = I.
B has full row rank =⇒ B+ ∈ B− = BR =⇒ BB+ = I.
Let G = B+A+. Only check (i).
(i) (AB)G(AB) = (AB)(B+A+)(AB) = A(BB+)(A+A)B = IIB = AB.

Ex2: Suppose for A both G1 and G2 satisfy the four Penrose conditions. Show G1 = G2.

G1
(ii)
=== G1AG1

(i)
=== G1(AG2A)G1

(iii)
=== G1(AG2)

∗(AG1)
∗ = G1G

∗
2A

∗G∗
1A

∗

= G1G
∗
2(AG1A)∗

(i)
=== G1G

∗
2A

∗ = G1(AG2)
∗ (iii)
=== G1AG2

(i)
=== G1(AG2A)G2

(iv)
=== (G1A)∗(G2A)∗G2 = A∗G∗

1A
∗G∗

2G2 = (AG1A)∗G∗
2G2

(i)
== A∗G∗

2G2 = (G2A)∗G2
(iv)
=== G1AG2

(ii)
=== G2.
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L14 More on Moore-Penrose inverses

1. AA∗ and A∗A

(1) (AA∗)+ = (A∗)+A+ and (A∗A)+ = A+(A∗)+

Proof For the first one let G = (A∗)+A+. Check (i) only.
(i) (AA∗)G(AA∗) = (AA∗)[(A∗)+A+](AA∗) = A[A∗(A∗)+](A+A)A∗

= A[A∗(A∗)+]∗(A+A)∗A∗ = (AA+A)(AA+A)∗ = AA∗.

(2) A∗(AA∗)+ = A+ = (A∗A)+A∗.

Comment: Recall: A has full row rank =⇒ A∗(AA∗)−1 = A+

A has full column rank =⇒ (AA∗)−1A∗ = A+.
(2) gives what if the conditions are removed.

Proof Show 1st one only: A∗(AA∗)+ = A∗(A∗)+A+ = (A+A)∗A+ = A+AA+ = A+.

(3) A(A∗A)−A∗ = AA+ and A∗(AA∗)−A = A+A.

Comment: While (A∗A)+A∗ = A+ and A∗(AA∗)+ = A+, non-unique (A∗A)−A∗ ̸= A+

and non-unique A∗(AA∗)− ̸= A+. However (3) holds.

Proof Show the first one only.
A(A∗A)−A∗ = AA+A(A∗A)−(AA+A)∗ = (AA+)∗A(A∗A)−A∗(AA+)∗

= (A+)∗A∗A(A∗A)−A∗AA+ = (A+)∗A∗AA+ = (AA+)∗AA+

= AA+.

2. Hermitian and idempotent matrices

(1) Recall: if P ∗ = P = P 2, then P+ = P . So PP+ = P and P+P = P .

Comment: AA+, A+A, I −AA+ and I −A+A are all Hermitian and idempotent, and
hence satisfy the conditions for P .

(2) The following (a), (b), (c) and (d) are equal.
(a) (ADB)+ (b) B+B(ADB)+ (c) (ADB)+AA+ (d) B+B(ADB)+AA+

Proof For (a)=(b) let G = B+B(ADB)+. Show (i) only.
(i) (ADB)G(ADB) = (ADB)[B+B(ADB)+](ADB)

= (ADB)(ADB)+(ADB) = ADB

For (a)=(c) let G = (ADB)+AA+. Show (ii) only.
(ii) G(ADB)G = [(ADB)+AA+](ADB)[(ADB)+AA+]

= (ADB)+(ADB)(ADB)+AA+ = G.

For (a)=(d) let G = B+B(ADB)+AA+. Show (iii) only.
(iii) (ADB)G = (ADB)[B+B(ADB)+AA+] = (ADB)(ADB)+AA+

= [AA+(ADB)(ADB)+]∗ = (ADB)(ADB)+ is Hermitian.

Ex1: (AB)+ = B+B(AB)+ = (AB)+AA+ = B+B(AB)+AA+.

Ex2: (I −B+B)(AB)+ = 0 since (I −B+B)(AB)+ = (I −B+B)B+B(AB)+ = 0.
[(I −AA+)B]+A = 0 since [(I −AA+)B]+A = [(I −AA+)B]+(I −AA+)A = 0.

Ex3: (AB)(AB)+AA+ = (AB)(AB)+ is directly by Ex1 or
(AB)(AB)+AA+ = {[(AB)(AB)+(AA+)]∗}∗ = [(AA+)(AB)(AB)+]∗

= [(AB)(AB)+]∗ = (AB)(AB)+
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3. Matrices with blocks

(1) In (A, B)
The columns of A and the columns of B are orthogonal

⇐⇒ A∗B = 0 ⇐⇒ B∗A = 0 ⇐⇒ B+A = 0 ⇐⇒ A+B = 0.

In

(
A
B

)
,

The rows of A and the rows of B are orthogonal
⇐⇒ AB∗ = 0 ⇐⇒ BA∗ = 0 ⇐⇒ BA+ = 0 ⇐⇒ AB+ = 0.

(2) (A, B)+ =

(
A+

B+

)
⇐⇒ The columns of A and the columns of B are orthogonal.

Proof ⇒: With (A, B)+ =

(
A+

B+

)
, (A, B)

(
A+

B+

)
(A, B) = (A, B)

=⇒ (A+BB+A, AA+B +B) = (A, B) =⇒ BB+A = 0 =⇒ B+A = 0.

⇐: For (A, B)+ =

(
A+

B+

)
, we check (i) only.

(i) (A, B)

(
A+

B+

)
(A, B) = (AA+ +BB+)(A, B) = (A, B).

Comment: If in A = (A1, .., Ak) A
∗
iAj = 0 for all i ̸= j, then A+ =

A+
1
...

A+
k

.

(3)

(
A
B

)+

= (A+, B+) ⇐⇒ The rows of A and B are orthogonal.

Proof Skipped.

Comment: If in A =

A1
...
Ak

, AiA
∗
j = 0 for all i ̸= j, then A+ = (A+

1 , .., A
+
k ).

Ex4:

(
A 0
0 B

)+

=


(
A
0

)+

(
0
B

)+

 =

(
A+ 0
0 B+

)

since

(
A
0

)∗(
0
B

)
= 0, A0∗ = 0 and 0B∗ = 0.(

A 0
0 B

)+

= ((A, 0)+, (0, B)+) =

(
A+ 0
0 B+

)
since (A, 0)(0, B)∗ = 0, A∗0 = 0 and 0∗B = 0.

Ex5:

(
0 A
B 0

)+

=?
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Stat701 Exercise

1. 4.1 p191. Find the singular value matrix ∆ for A =

(
1 2 2 1
1 1 1 −1

)
.

2. 5.2 p238. Find A+ for A =


1 1 1
0 1 0
0 1 1
2 0 1

 using Theorem 5.3 (h) A+ = (A′A)−1A′.

Hint: Calculation tool for M−1H: (M |H)
row−→ (I|M−1H)

3. 5.3 p238. Find a+ for a =


2
1
3
2

.

4. 5.12 (a) p239. For real matrix A show A′AA+ = A′ and A+AA′ = A′ separately.

5. 5.16 p240. B has full row rank. Show (AB)(AB)+ = AA+.
Hint: first show [AA+(AB)(AB)+]∗ = (AB)(AB)+.
Next, show [AA+(AB)(AB)+]∗ = AA+ under the condition that B has a right-inverse BR.
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