L13 Moore-Penrose inverses

1. Moore-Penrose inverse

(1) Moore-Penrose inverse

For $A \in C^{m \times n}$ matrix $G \in C^{n \times m}$ satisfying the following four Penrose conditions exists, is unique, and is called the Moore-Penrose inverse of A denoted by A^+ .

(i)
$$AGA = A$$
 (ii) $GAG = G$ (iii) $(AG)^* = GB$ (iv) $(GA)^* = GA$

Proof Suppose by SVD $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$. We show that

G satisfying the four Penrose conditions \iff $G = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^*$.

$$\Rightarrow : \text{ (i) } AGA = A \Longrightarrow G \in A^- \Longrightarrow G = V \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U^*.$$

(iii)
$$AG$$
 is Hermitian $\Longrightarrow U\begin{pmatrix} I_r & \Delta H_{12} \\ 0 & 0 \end{pmatrix}U^*$ is Hermitian. So $H_{12}=0$.

(iv)
$$GA$$
 is Hermitian $\Longrightarrow V\begin{pmatrix} I_r & 0 \\ H_{21}\Delta & 0 \end{pmatrix}V^*$ is Hermitian. So $H_{21}=0$.

(ii)
$$GAG = G \Longrightarrow H_{22} = 0$$
. Hence $G = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^*$.

$$\Leftarrow \text{: (i) } AGA = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^* = A. \text{ (ii) } GAG = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^* = G.$$

(iii)
$$AG = U \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} U^*$$
 is Hermitian. (iv) $GA = V \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} V^*$ is Hermitian.

Hence G satisfying the four Penrose conditions.

Comments: $A^+ \in A^-$. For SVD $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$, $A^+ = V \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^*$ is SVD for A^+ . rank $(A^+) = \text{rank}(A)$.

(2)
$$0_{m \times n}^+ = 0_{n \times m}$$
; With $\alpha \neq 0$, $(\alpha A)^+ = \frac{1}{\alpha} A^+$

Proof For the first one let $G = 0_{n \times m}$. Check (iii) only.

(iii) $0_{m \times n} G = 0_{m \times m}$ is real symmetric and hence is Hermitian;

For the second one let $G = \frac{1}{\alpha}A^+$. Check (iv) only. (iv) $G(\alpha A) = \frac{1}{\alpha}A^+\alpha A = A^+A$ is Hermitian.

(iv)
$$G(\alpha A) = \frac{1}{\alpha} A^{+} \alpha A = A^{+} A$$
 is Hermitian.

(3)
$$(A')^+ = (A^+)', (\overline{A})^+ = \overline{A^+}, (A^*)^+ = (A^+)^* \text{ and } (A^+)^+ = A$$

Proof For the 1st one let $G = (A^+)'$. Check (i): $A'GA' = A'(A^+)'A' = (AA^+A)' = A'$. For the 2nd one let $G = \overline{A^+}$. Check (ii): $G\overline{A}G = \overline{A^+}\overline{A}\overline{A^+} = \overline{A^+AA^+} = \overline{A^+}$. For the 3rd one let $G = (A^+)^*$. Check (iii): $A^*G = A^*(A^+)^* = (A^+A)^*$ is Hermitian.

For the last one let G = A. Check (iv): $GA^+ = AA^+$ is Hermitian.

Ex1: For column vector
$$0 \neq x \in C^n$$
, $x^+ = \frac{x^*}{\|x\|^2}$.
Check (i) and (ii). (i): $x \frac{x^*}{\|x\|^2} x = x$, (ii) $\frac{x^*}{\|x\|^2} x \frac{x^*}{\|x\|^2} = \frac{x^*}{\|x\|^2}$.

Comment: $(x')^+ = (x^+)' = \frac{(x')^*}{\|x\|^2}$.

- 2. More special cases
 - (1) If $A \in C^{m \times n}$ has full row rank, then $AA^* \in C^{m \times m}$ is non-singular. Then $A^+ = A^*(AA^*)^{-1}$.

Proof Let $G = A^*(AA^*)^{-1}$. Only check (i). (i) $AGA = A[A^*(AA^*)^{-1}]A = A$.

(2) If $A \in C^{m \times n}$ has full column rank, then $A^*A \in C^{n \times n}$ is non-singular. Then $A^+ = (A^*A)^{-1}A^*$.

Proof Let $G = (A^*A)^{-1}A^*$. Only check (ii). (ii) $GAG = [(A^*A)^{-1}A^*]A[(A^*A)^{-1}A^*] = (A^*A)^{-1}A^* = G$.

- (3) If A has orthonormal columns, i.e., $A^*A = I$, then $A^+ = A^*$ **Proof** Let $G = A^*$. Only check iii). (iii) $AG = AA^*$ is Hermitian.
- (4) If A has orthonormal rows, i.e., $(A')^*A' = I \iff AA^* = I$, then $A^+ = A^*$. **Proof** Let $G = A^*$. Only check (iv). (iv) $GA = A^*A$ is Hermitian.
- (5) If $A^* = A = A^2$, then $A^+ = A$. **Proof** Let G = A. Only check (i). (i) AGA = AAA = A.
- 3. Special cases of $(AB)^+ = B^+A^+$
 - (1) $(AB)^+ \neq B^+A^+$. For A = (1, 2) and $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $(AB)^+ = 1^+ = 1$. But $B^+A^+ = (1, 0) \begin{pmatrix} 1 \\ 2 \end{pmatrix} / 5 = \frac{1}{5}$.
 - (2) If AB = 0, then $(AB)^+ = B^+A^+$. **Proof** If AB = 0, then $(AB)^+ = 0^+ = 0$. On the other hand, $B^+A^+ = B^+BB^+A^+AA^+ = B^+(B^+)^*(AB)^*(A^+)^*A^* = 0$.
 - (3) If A has orthonormal columns, i.e., $A^*A = I$, then $(AB)^+ = B^+A^+$ **Proof** Let $G = B^+A^+ = BA^*$. Only check (iii). (iii) $ABG = ABB^+A^* = A(BB^+)A^*$ is Hermitian.
 - (4) If B has orthonormal rows, i.e., BB* = I, then (AB)+ = B+A+
 Proof Let G = B+A+ = B*A+. Only check (ii).
 (ii) GABG = (B*A+)AB(B*A+) = B*A+AA+ = B+A+ = G.
 - (5) If A has full column rank and B has full row rank, then $(AB)^+ = B^+A^+$.

Proof A has full column rank $\Longrightarrow A^+ \in A^- = A^L \Longrightarrow A^+A = I$. B has full row rank $\Longrightarrow B^+ \in B^- = B^R \Longrightarrow BB^+ = I$. Let $G = B^+A^+$. Only check (i). (i) $(AB)G(AB) = (AB)(B^+A^+)(AB) = A(BB^+)(A^+A)B = IIB = AB$.

Ex2: Suppose for A both G_1 and G_2 satisfy the four Penrose conditions. Show $G_1 = G_2$.

 $G_{1} \stackrel{(ii)}{=} G_{1}AG_{1} \stackrel{(i)}{=} G_{1}(AG_{2}A)G_{1} \stackrel{(iii)}{=} G_{1}(AG_{2})^{*}(AG_{1})^{*} = G_{1}G_{2}^{*}A^{*}G_{1}^{*}A^{*}$ $= G_{1}G_{2}^{*}(AG_{1}A)^{*} \stackrel{(i)}{=} G_{1}G_{2}^{*}A^{*} = G_{1}(AG_{2})^{*} \stackrel{(iii)}{=} G_{1}AG_{2} \stackrel{(i)}{=} G_{1}(AG_{2}A)G_{2}$ $\stackrel{(iv)}{=} (G_{1}A)^{*}(G_{2}A)^{*}G_{2} = A^{*}G_{1}^{*}A^{*}G_{2}^{*}G_{2} = (AG_{1}A)^{*}G_{2}^{*}G_{2} \stackrel{(i)}{=} A^{*}G_{2}^{*}G_{2} = (G_{2}A)^{*}G_{2}$ $\stackrel{(iv)}{=} G_{1}AG_{2} \stackrel{(ii)}{=} G_{2}.$

L14 More on Moore-Penrose inverses

1. AA^* and A^*A

(1)
$$(AA^*)^+ = (A^*)^+A^+$$
 and $(A^*A)^+ = A^+(A^*)^+$

Proof For the first one let $G = (A^*)^+ A^+$. Check (i) only.

(i)
$$(AA^*)G(AA^*) = (AA^*)[(A^*)^+A^+](AA^*) = A[A^*(A^*)+](A^+A)A^*$$

= $A[A^*(A^*)^+]^*(A^+A)^*A^* = (AA^+A)(AA^+A)^* = AA^*.$

(2) $A^*(AA^*)^+ = A^+ = (A^*A)^+A^*$.

Comment: Recall: A has full row rank $\Longrightarrow A^*(AA^*)^{-1} = A^+$ A has full column rank $\Longrightarrow (AA^*)^{-1}A^* = A^+$.

(2) gives what if the conditions are removed.

Proof Show 1st one only: $A^*(AA^*)^+ = A^*(A^*)^+A^+ = (A^+A)^*A^+ = A^+AA^+ = A^+$.

(3)
$$A(A^*A)^-A^* = AA^+$$
 and $A^*(AA^*)^-A = A^+A$.

Comment: While $(A^*A)^+A^* = A^+$ and $A^*(AA^*)^+ = A^+$, non-unique $(A^*A)^-A^* \neq A^+$ and non-unique $A^*(AA^*)^- \neq A^+$. However (3) holds.

Proof Show the first one only.

$$A(A^*A)^-A^* = AA^+A(A^*A)^-(AA^+A)^* = (AA^+)^*A(A^*A)^-A^*(AA^+)^*$$

= $(A^+)^*A^*A(A^*A)^-A^*AA^+ = (A^+)^*A^*AA^+ = (AA^+)^*AA^+$
= AA^+ .

2. Hermitian and idempotent matrices

(1) Recall: if $P^* = P = P^2$, then $P^+ = P$. So $PP^+ = P$ and $P^+P = P$.

Comment: AA^+ , A^+A , $I-AA^+$ and $I-A^+A$ are all Hermitian and idempotent, and hence satisfy the conditions for P.

(2) The following (a), (b), (c) and (d) are equal.

(a)
$$(ADB)^+$$
 (b) $B^+B(ADB)^+$ (c) $(ADB)^+AA^+$ (d) $B^+B(ADB)^+AA^+$

Proof For (a)=(b) let $G = B^+B(ADB)^+$. Show (i) only.

(i)
$$(ADB)G(ADB) = (ADB)[B^+B(ADB)^+](ADB)$$

= $(ADB)(ADB)^+(ADB) = ADB$

For (a)=(c) let $G = (ADB)^+AA^+$. Show (ii) only.

(ii)
$$G(ADB)G = [(ADB)^+AA^+](ADB)[(ADB)^+AA+]$$

= $(ADB)^+(ADB)(ADB)^+AA^+ = G$.

For (a)=(d) let $G = B^+B(ADB)^+AA^+$. Show (iii) only.

(iii)
$$(ADB)G = (ADB)[B^{+}B(ADB)^{+}AA^{+}] = (ADB)(ADB)^{+}AA^{+}$$

= $[AA^{+}(ADB)(ADB)^{+}]^{*} = (ADB)(ADB)^{+}$ is Hermitian.

Ex1: $(AB)^+ = B^+B(AB)^+ = (AB)^+AA^+ = B^+B(AB)^+AA^+$.

Ex2:
$$(I - B^+ B)(AB)^+ = 0$$
 since $(I - B^+ B)(AB)^+ = (I - B^+ B)B^+ B(AB)^+ = 0$. $[(I - AA^+)B]^+ A = 0$ since $[(I - AA^+)B]^+ A = [(I - AA^+)B]^+ (I - AA^+)A = 0$.

Ex3:
$$(AB)(AB)^+AA^+ = (AB)(AB)^+$$
 is directly by Ex1 or $(AB)(AB)^+AA^+ = \{[(AB)(AB)^+(AA^+)]^*\}^* = [(AA^+)(AB)(AB)^+]^* = [(AB)(AB)^+]^* = (AB)(AB)^+$

3. Matrices with blocks

- (1) In (A, B)The columns of A and the columns of B are orthogonal $\iff A^*B = 0 \iff B^*A = 0 \iff B^+A = 0 \iff A^+B = 0$. In $\binom{A}{B}$, The rows of A and the rows of B are orthogonal $\iff AB^* = 0 \iff BA^* = 0 \iff BA^+ = 0 \iff AB^+ = 0$.
- (2) $(A, B)^+ = {A^+ \choose B^+} \iff$ The columns of A and the columns of B are orthogonal.

Proof
$$\Rightarrow$$
: With $(A, B)^+ = {A^+ \choose B^+}$, $(A, B) {A^+ \choose B^+}$, $(A, B) = (A, B)$
 $\Rightarrow (A + BB^+A, AA^+B + B) = (A, B) \Rightarrow BB^+A = 0 \Rightarrow B^+A = 0.$
 \Leftarrow : For $(A, B)^+ = {A^+ \choose B^+}$, we check (i) only.
(i) $(A, B) {A^+ \choose B^+}$, $(A, B) = (AA^+ + BB^+)(A, B) = (A, B)$.

Comment: If in $A = (A_1, ..., A_k)$ $A_i^* A_j = 0$ for all $i \neq j$, then $A^+ = \begin{pmatrix} A_1^+ \\ \vdots \\ A_k^+ \end{pmatrix}$.

(3)
$$\binom{A}{B}^+ = (A^+, B^+) \iff$$
 The rows of A and B are orthogonal.

Proof Skipped.

Comment: If in
$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_k \end{pmatrix}$$
, $A_i A_j^* = 0$ for all $i \neq j$, then $A^+ = (A_1^+, ..., A_k^+)$.

Ex4:
$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^+ = \begin{pmatrix} \begin{pmatrix} A \\ 0 \end{pmatrix}^+ \\ \begin{pmatrix} 0 \\ B \end{pmatrix}^+ \end{pmatrix} = \begin{pmatrix} A^+ & 0 \\ 0 & B^+ \end{pmatrix}$$

since
$$\binom{A}{0}^* \binom{0}{B} = 0$$
, $A0^* = 0$ and $0B^* = 0$.

since
$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^{+} = ((A, 0)^{+}, (0, B)^{+}) = \begin{pmatrix} A^{+} & 0 \\ 0 & B^{+} \end{pmatrix}$$
since $(A, 0)(0, B)^{*}$

since
$$(A, 0)(0, B)^* = 0$$
, $A^*0 = 0$ and $0^*B = 0$.

Ex5:
$$\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}^+ = ?$$

Stat701 Exercise

- 1. 4.1 p191. Find the singular value matrix Δ for $A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$.
- 2. 5.2 p238. Find A^+ for $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ using Theorem 5.3 (h) $A^+ = (A'A)^{-1}A'$.

Hint: Calculation tool for $M^{-1}H$: $(M|H) \xrightarrow{row} (I|M^{-1}H)$

- 3. 5.3 p238. Find \mathbf{a}^+ for $\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 2 \end{pmatrix}$.
- 4. 5.12 (a) p239. For real matrix A show $A'AA^+ = A'$ and $A^+AA' = A'$ separately.
- 5. 5.16 p240. B has full row rank. Show $(AB)(AB)^+ = AA^+$. Hint: first show $[AA^+(AB)(AB)^+]^* = (AB)(AB)^+$. Next, show $[AA^+(AB)(AB)^+]^* = AA^+$ under the condition that B has a right-inverse B^R .