
L11 Singular values

1. Eigenvalue decomposition of Hermitian matrices

(1) Orthonormal matrices
For A = (aij)m×n and B = (bij)m×n ⟨A, B⟩ =

∑
ij bijaij = tr(B∗A) is an inner product.

With this inner product

A is a unit matrix
def⇐⇒ ∥A∥ = 1 ⇐⇒ ∥A∥2 = 1 ⇐⇒ ⟨A, A⟩ = 1.

A and B are orthogonal
def⇐⇒ ⟨A, B⟩ = 0 but A ̸= 0 and B ̸= 0.

Matrices M1, ...,Mn are orthonormal
def⇐⇒ ⟨Mi, Mj⟩ =

{
1 i = j
0 i ̸= j

.

Ex1: If U = (u1, ..., un) ∈ Cn×n is unitary, let Mi = uiu
∗
i ∈ Cn×n, i = 1, ..., n.

Then (i) M∗
i = Mi = M2

i (ii) rank(Mi) = 1 (iii) M1, ...,Mn are orthonormal.
(i) M∗

i = (uiu
∗
i )

∗ = uiu
∗
i = Mi; MiMi = (uiu

∗
i )(uiu

∗
i ) = uiu

∗
i = Mi;

(ii) rank(Mi) = tr(Mi) = tr(uiu
∗
i ) = tr(u∗iui) = tr(1) = 1

(iii) ⟨Mi, Mi⟩ = tr(M∗
i Mi) = tr(Mi) = 1; ⟨Mi, Mj⟩ = tr(uju

∗
juiu

∗
i ) = tr(0) = 0.

(2) Spectral decomposition
EVD of A = A∗ ∈ Cn×n expresses A as a LC of n orthonormal matrices
A = UΛU∗ = (u1, .., un)diag(λ1, ..., λn)(u1, ..., un)

∗ = λ1(u1u
∗
1) + · · ·+ λn(unu

∗
n).

This expression is also called a spectral decomposition of A.

(3) Compact form of EVD
If A∗ = A ∈ Cn×n has rank r, then A = UIΛrU

∗
I where UI ∈ Cn×r with U∗

I UI = Ir and
Λr = diag(λ1, .., λr) with λi ̸= 0 for i = 1, ..., r.

If A = UΛU∗ has rank r, then Λ has rank r. So Λ =

(
Λr 0
0 0

)
where Λr = diag(λ1, .., λr)

with λi ̸= 0 for i = 1, .., r. Thus A = (UI , UII)

(
Λr 0
0 0

)(
U∗
I

U∗
II

)
= UIΛrU

∗
I .

Ex2: With A = UIΛrU
∗
I , by expanding UI to unitary U = (UI , UII) and Λr to

(
Λr 0
0 0

)
A = UIΛrU

∗
I = UΛU∗. This is a full form of EVD of A.

2. Definite and semi-definite matrices

(1) Recall definitions
A∗ = A ∈ Cn×n.

A > 0
def⇐⇒ x∗Ax > 0 for all 0 ̸= x ∈ Cn; A < 0

def⇐⇒ x∗Ax < 0 for all 0 ̸= x ∈ Cn

A ≥ 0
def⇐⇒ x∗Ax ≥ 0 for all 0 ̸= x ∈ Cn; A ≤ 0

def⇐⇒ x∗Ax ≤ 0 for all 0 ̸= x ∈ Cn.

(2) Iff-conditions
A∗ = A = XΛX∗ where Λ = diag(λ1, ..., λn) and X is unitary by EVD.
A > 0 ⇐⇒ λi > 0 for all i A < 0 ⇐⇒ λi < 0 for all i
A ≥ 0 ⇐⇒ λi ≥ 0 for all i A ≤ 0 ⇐⇒ λi ≤ 0 for all i.

Proof Only show A > 0 ⇐⇒ λi > 0 for all i

⇒: A = XΛX∗ > 0 where X = (x1, .., xn) is unitary and Λ = diag(λ1, ..., λn).
Then 0 < x∗iAxi = x∗iXΛX∗xi = e′iΛei = λi for all i.

⇐: z ̸= 0, z∗Az = (z∗X)Λ(X∗z)
y=X∗z
==== y∗Λy =

∑
i λi|yi|2.

z ̸= 0 =⇒ y = X∗z ̸= 0 =⇒
∑

i λi|yi|2 > 0. So A > 0.
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(3) Application: Definition of A1/2 and A−1/2.
For Λ = diag(λ1, ..., λn) with λi ≥ 0 for all i, define Λ1/2 = diag(

√
λ1, ...,

√
λn);

For Λ = diag(λ1, ..., λn) with λi > 0 for all i, define Λ−1/2 = diag(1/
√
λi, ..., 1/

√
λn).

For 0 ≤ A = XΛX∗ define A1/2 = XΛ1/2X∗. Then A1/2 ≥ 0 and A1/2A1/2 = A.
For 0 < A = XΛX∗ define A−1/2 = XΛ−1/2X∗. Then A−1/2 > 0, A−1/2A−1/2 = A−1.

3. Singular values of A ∈ Cm×n

(1) Eigenvalues of AA∗ and A∗A
For A ∈ Cm×n, all eigenvalues of AA∗ ∈ Cm×m and A∗A ∈ Cn×n are ≥ 0.

Proof By EVD for Hermitian AA∗ and A∗A, AA∗ = UΛU∗ and A∗A = V ΓV ∗.
But AA∗ ≥ 0 and A∗A ≥ 0 since x∗AA∗x = ∥A∗x∥2 ≥ 0 for all x ∈ Cm and
y∗A∗Ay = ∥Ay∥2 ≥ 0 for all y ∈ Cn. So all diagonal elements of Λ and Γ are ≥ 0.

(2) Number of positive eigenvalues of AA∗ and A∗A
For A ∈ Cm×n with rank r, AA∗ and A∗A have r positive eigenvalues.

Proof (3) of 3 in L07 shows that rank(AA∗) = rank(A∗A) = rank(A) = r.

Thus in EVDs AA∗ = UΛU∗ and A∗A = V ΓV ∗, Λ =

(
Λr 0
0 0

)
∈ Rm×m and

Γ =

(
Γr 0
0 0

)
∈ Rn×n, and all diagonal elements of Λr ∈ Rr×r and Γr ∈ Rr×r are

positives.

(3) Distinct positive eigenvalues of AA∗ and A∗A
AA∗ and A∗A share the same set of distinct eigenvalues

Proof For “δ2 > 0 is an eigenvalue for AA∗ ⇐⇒ δ2 > 0 is an eigenvalue for A∗A”
only show ⇒: If δ2 > 0 is an eigenvalue for AA∗, then AA∗x = δ2x, x ̸= 0.
So (A∗A)(A∗x) = δ2(A∗x). Here A∗x ̸= 0 since otherwise

A∗x = 0 =⇒ 0 = AA∗x = δ2x =⇒ x = 0 ⊗ .

Thus δ2 > 0 is an eigenvalue for A∗A.

(4) δ2 > 0 is an eigenvalue for AA∗ and A∗A with multiplicity r and s. Then r = s.

Pf: δ2 > 0 is an eigenvalue of AA∗ with multiplicity r. There exists B ∈ Cm×r with
B∗B = Ir such that (AA∗)B = δ2B. So (A∗A)(A∗B) = δ2(A∗B) where A∗B ∈ Cn×r

with (A∗B)∗(A∗B) = B∗AA∗B = B∗δ2B = δ2Ir. Thus r ≤ s.
δ2 > 0 is an eigenvalue of A∗A with multiplicity s. There exists D ∈ Cn×s

with D∗D = Is such that (A∗A)D = δ2D. So (AA∗)(AD) = δ2(AD) where
(AD)∗(AD) = D∗A∗AD = D∗δ2D = δ2Is. Thus s ≤ r. It follows that r = s.

(5) Singular values of A
For A ∈ Cm×n with rank r, AA∗ ∈ Cm×m and A∗A ∈ Cn×n share positive-eigenvalue
matrix ∆2 = diag(δ21 , ..., δ

2
r ) with δ1 ≥ · · · ≥ δr > 0. Here δ1 ≥ · · · ≥ δr > 0 are positive

eigenvalues for A and ∆ is the positive-singular value matrix.

Ex3: Find positive-singular matrix for A =

(
1
2

)
. Two methods.

AA′ =

(
1 2
2 4

)
=⇒ |AA′ − λI| = λ(λ− 5) =⇒ δ2 = 5 =⇒ ∆2 = 5, ∆ =

√
5.

A′A = 5 =⇒ δ2 = 5 =⇒ ∆2 = 5, ∆ =
√
5.
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L12 Singular value decomposition and generalized inverse

1. Singular value decomposition

(1) Singular value decomposition (SVD)
For A ∈ Cm×n with rank(A) = r

(i) Full form: A = U

(
∆ 0
0 0

)
V ∗ where U ∈ Cm×m and V ∈ Cn×n are unitary and in

(
∆ 0
0 0

)
∈ Rm×n ∆ =

δ1 · · · 0
...

. . .
...

0 · · · δr

 with δ1 ≥ · · · ≥ δr > 0 is positive-singular

value matrix for A.

(ii) Compact form: A = UI∆V ∗
I where UI ∈ Cm×r, VI ∈ Cn×r, U∗

I UI = Ir = V ∗
I VI , and

∆ ∈ Rr×r is positive-singular value matrix for A.

(2) Constructive proof approach I

By EVD AA∗ = U

(
∆2 0
0 0

)
U∗ = (UI , UII)

(
∆2 0
0 0

)
(UI , UII)

∗ = UI∆
2U∗

I .

Let VI = A∗UI∆
−1. Then V ∗

I VI = ∆−1U∗
IAA

∗UI∆
−1 = ∆−1U∗

I UI∆
2U∗

I UI∆
−1 = Ir.

A = UU∗A = U(A∗U)∗ = U(A∗UI , A
∗UII)

∗ = U(VI∆, A∗UII)
∗

= (UI , UII)

(
∆V ∗

I

U∗
IIA

)
= UI∆V ∗

I + UIIU
∗
IIA.

But U∗
IIA = 0 since (U∗

IIA)(U∗
IIA)∗ = U∗

IIAA
∗UII = U∗

IIUI∆
2U∗

I UII = 0.
Hence A = UI∆V ∗

I . The compact form of SVD holds.

Expand VI to unitary V = (VI , VII). Then A = UI∆V ∗
I = (UI , UII)

(
∆ 0
0 0

)
(VI , VII)

∗.

The full form of SVD holds.

(3) Constructive proof approach II

By EVD, A∗A = V

(
∆2 0
0 0

)
V ∗ = (VI VII)

(
∆2 0
0 0

)
(VI , VII)

∗ = VI∆
2V ∗

I .

Let UI = AVI∆
−1. Then U∗

I UI = ∆−1V ∗
I A

∗AVI∆
−1 = ∆−1V ∗

I VI∆
2V ∗

I V I∆−1 = Ir.

A = AV V ∗ = (AVI , AVII)V
∗ = (UI∆, AVII)V

∗ = (UI∆, AVII)

(
V ∗
I

V ∗
II

)
= UI∆V ∗

I +AVIIV
∗
II .

But AVII = 0 since (AVII)
∗(AVII) = V ∗

IIA
∗AVII = V ∗

IIVI∆
2V ∗

I VII = 0.
Hence A = UI∆V ∗

I . The compact form of SVD holds.

Expand UI to unitary (UI , UII). Then A = UI∆V ∗
I = (UI , UII)

(
∆ 0
0 0

)
(VI , VII)

∗.

The full form of SVD holds.

(4) Comment:

For SVD ∆ and

(
∆ 0
0 0

)
are unique. But U , UI , V and VI are not unique.

Ex1: If A has full row rank, then by SVD A = U(∆, 0)V ∗ = U∆V ∗
I .

If A has full column rank, then by SVD A = U

(
∆
0

)
V ∗ = UI∆V ∗.
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2. Generalized inverse

(1) Definition
For A ∈ Cm×n G ∈ Cn×m is a generalized inverse of A denoted as A− if AGA = A.

(2) Existence, non-uniqueness and expressions

If A = U

(
∆ 0
0 0

)
V ∗, then A− =

{
V

(
∆−1 H12

H21 H22

)
U∗ : H12, H21 and H22

}
.

Proof G ∈ A− ⇐⇒ AGA = A ⇐⇒
(
∆ 0
0 0

)
V ∗GU

(
∆ 0
0 0

)
=

(
∆ 0
0 0

)
V ∗GU=H⇐==⇒

(
∆ 0
0 0

)(
H11 H12

H21 H22

)(
∆ 0
0 0

)
=

(
∆ 0
0 0

)
⇐⇒ ∆H11∆ = ∆ ⇐⇒ H11 = ∆−1 ⇐⇒ V ∗GU =

(
∆−1 H12

H21 H22

)
⇐⇒ G = V

(
∆−1 H12

H21 H22

)
U∗

(3) AA− and A−A are idempotent.
(AA−)2 = (AA−A)A− = AA− and (A−A)2 = A−(AA−A) = A−A.
A− represents the set of all generalized inverses of A, or any individual G ∈ A−.

Ex2: A has full row rank=⇒ A = U(∆, 0)V ∗ =⇒ A− = V

(
∆−1

H21

)
U∗.

A has full column rank =⇒ A = U

(
∆
0

)
V ∗ =⇒ A− = V (∆−1, H12)U

∗.

A ∈ Cn×n is nonand rank(A) = n =⇒ A = U∆V ∗ =⇒ A− = V∆−1U∗.

3. Generalized inverse and ordinary inverse

(1) Left-inverse and A−

AL is the collection of all left-inverses of A. If AL ̸= ∅, then AL = A−.

Proof ⊂: G ∈ AL ̸= ∅ =⇒ GA = I =⇒ AGA = A =⇒ G ∈ A−.

⊃: AL ̸= ∅ =⇒ A has full column rank =⇒ By SVD A = U

(
∆
0

)
V ∗.

G ∈ A− =⇒ G = V (∆−1, H12)U
∗ =⇒ GA = I =⇒ G ∈ AL.

(2) Right-inverse and A−

AR is the collection of all right-inverses of A. If AR ̸= ∅, then AR = A−.

Proof ⊂: G ∈ AR ̸= ∅ =⇒ AG = I =⇒ AGA = A =⇒ G ∈ A−.

⊃: AR ̸= ∅ =⇒ A full row rank =⇒ By SVD A = U(∆, 0)V ∗.

G ∈ A− =⇒ G = V

(
∆−1

H21

)
U∗ =⇒ AG = I =⇒ G ∈ AR.

(3) Inverse and A−

Suppose A has inverse A−1. Then A−1 = A−.

Proof AA−1A = A. So A−1 ∈ A−.
In Ex2 we see A = U∆V ∗ and A− = V∆−1U∗. So AA− = A−A = I.
Hence A− contains only one matrix that is A−1.
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