L11 Singular values

1. Eigenvalue decomposition of Hermitian matrices

(1) Orthonormal matrices B
For A = (aij)mxn and B = (bij)mxn (A, B) = >_;; bija;; = tr(B*A) is an inner product.
With this inner product
Ais a unit matrix 4% A = 1 < |42 =1 <= (4, A) = 1.
A and B are orthogonal FON (A, B)=0but A#0and B # 0.
Matrices My, ..., M, are orthonormal £ (M;, M;) = { (1) z ;j .
Ex1: If U = (uy,...,u,) € C™*™ is unitary, let M; = wu} € C"*", i=1,...,n.
Then (i) M} = M; = M? (i) rank(M;) =1  (iii) M, ..., M,, are orthonormal.
(i) M} = (wuf)* = wiu} = M;; MiM; = (uiw))(win]) = wul = My;
(ii) rank(M;) = tr(M;) = tr(uwu)) = tr(ufu;) =tr(l) =1
(111) <MZ, M1> = tI‘(MZ*Ml) = tI‘(Mi) = 1; <M17 M]> = tr(uju
(2) Spectral decomposition
EVD of A = A* € C™*™ expresses A as a LC of n orthonormal matrices
A=UAU" = (u1, .., up)diag(A1, ..., Ap) (U1, ooy un)™ = Ar(wiu}) + -+ - + A (unus).
This expression is also called a spectral decomposition of A.
(3) Compact form of EVD
If A* = A e C™" has rank r, then A = UrA,U; where Uy € C™*" with U;Ur = I, and
A, = diag(A1, .., Ap) with \; 0 fori=1,...,7.

If A= UAU* hasrank r, then A hasrank r. So A = (

Juguf) = tr(0) = 0.

%r 8) where A, = diag(A1, -, Ar)

with A; #0 fori=1,..,r. Thus A = (U[7 U[[) <*/Br 8) (UU£> = U[ATU]*.
II

Ex2: With A = UrA, Uy, by expanding Uy to unitary U = (Ur, Uyr) and A, to (%r 8)
A =Ur\.U;f =UAU*. This is a full form of EVD of A.
2. Definite and semi-definite matrices

(1) Recall definitions
A*=AeCmm,
A>0<ga:*Ax>0foraHO7ém€C"; A<O<ﬂ>x*A1:<Of0raHO7ém€C"
AZO&x*AmZOforaHO#xEC”; Agogx*AxSOforaHO#xeC’”.
(2) Iff-conditions
A* = A= XAX* where A = diag(\1, ..., \,) and X is unitary by EVD.
A>0<= X\, >0forall i A<0<= )\, <O0foralli
A>0<= \; >0 for all ¢ A <0< \; <0 for all 3.
Proof Only show A > 0 <= \; > 0 for all ¢
=: A= XAX* >0 where X = (21, ..,%,) is unitary and A = diag(A1, ..., Ap).
Then 0 < xfAx; = 2 XAX*x; = e;Ae; = \; for all i.
< 2#0, 274z = (2" X)A(X*2) =2 v Ay =0, Nyl
z;éO:>y:X*z7é0:>Zi)\i|yi|2>O. So A > 0.




(3) Application: Definition of A'/? and A~1/2.
For A = diag(\1, ..., \p) with \; > 0 for all 7, define A2 = diag(v/A1, ..., vV/An);
For A = diag()\q, ..., \p) with \; > 0 for all ¢, define A2 = diag(1/vV/Ai, s 1/vV/An).
For 0 < A = XAX* define AY/2 = XAY2X*, Then AY? > (0 and AY/2AY2 = A.
For 0 < A= XAX* define A=1/2 = XA~1/2X* Then A~Y/2 >0, A71/2471/2 = A1,

3. Singular values of A € C™*"

(1) Eigenvalues of AA* and A*A
For A € C™*" all eigenvalues of AA* € C™*™ and A*A € C™*"™ are > 0.
Proof By EVD for Hermitian AA* and A*A, AA* = UAU* and A*A =VTV*.
But AA* > 0 and A*A > 0 since 2*AA*r = ||A*z||*> > 0 for all z € C™ and
y*A* Ay = || Ay||? > 0 for all y € C™. So all diagonal elements of A and I" are > 0.

(2) Number of positive eigenvalues of AA* and A*A
For A € C"™*" with rank r, AA* and A*A have r positive eigenvalues.

Proof (3) of 3 in LO7 shows that rank(AA*) = rank(A*A) = rank(A) = r.

Thus in EVDs AA* = UAU* and A*A = VI'V*, A = <%T 8) € R™X™ and

I' = (I[;T 8) € R™ " and all diagonal elements of A, € R"™*" and I', € R"™*" are

positives.
(3) Distinct positive eigenvalues of AA* and A*A
AA* and A* A share the same set of distinct eigenvalues

Proof For “62 > 0 is an eigenvalue for AA* <= §2 > 0 is an eigenvalue for A*A”
only show =: If §2 > 0 is an eigenvalue for AA*, then AA*x = 6%z, = # 0.
So (A*A)(A*x) = 6%(A*z). Here A*zx # 0 since otherwise

Ar=0=0=AA"z=01—=21=0 ®.

Thus 62 > 0 is an eigenvalue for A*A.
(4) 6% > 0 is an eigenvalue for AA* and A*A with multiplicity » and s. Then r = s.
Pf: 62 > 0 is an eigenvalue of AA* with multiplicity r. There exists B € C™*" with
B*B = I, such that (AA*)B = §2B. So (A*A)(A*B) = 62(A*B) where A*B € C™*"
with (A*B)*(A*B) = B*AA*B = B*§°B = 62I,. Thus r < s.
62 > 0 is an eigenvalue of A*A with multiplicity s. There exists D € C™**
with D*D = I such that (A*A)D = §?°D. So (AA*)(AD) = 6?(AD) where
(AD)*(AD) = D*A*AD = D*6°D = §°I,. Thus s < r. It follows that r = s.
(5) Singular values of A
For A € C™*" with rank r, AA* € C™*™ and A*A € C™*" share positive-eigenvalue
matrix A2 = diag(&%, ...,(53) with 47 > --- > 4, > 0. Here 61 > --- > 6, > 0 are positive
eigenvalues for A and A is the positive-singular value matrix.

Ex3: Find positive-singular matrix for A = <;> Two methods.

2 4
AA=5=§=5= A2=5 A=+5.

AA’:(I 2>:|AA’—)\I|:)\()\—5):>62:5:A2:5, N



L12 Singular value decomposition and generalized inverse

1. Singular value decomposition

(1)

(4)

Singular value decomposition (SVD)
For A € C"™*" with rank(A4) = r

(i) Full form: A=U <€ 8) V* where U € C"™*™ and V € C™*™ are unitary and in
A 5 - 0

(O 8) eR™"A=1: . | withd >--- >4, > 0 is positive-singular
0 - &,

value matrix for A.
(ii) Compact form: A = UrAV} where Ur € C™*", Vi € C™*", UyUr = I, = V;'Vr, and

A € R"™" is positive-singular value matrix for A.
Constructive proof approach I

. A% 0\, A? 0 . o
By EVD AA*=U 0 0 U* = (Ur, Urp) 0 0 (Ur, Urp)* = UrA“U;.
Let V; = A*UrA™Y. Then V'V = ATWUFAA*UA™ = ATUFUA?UFU AT = I,
A = UUA=UAU)* =U(A*U;, A*Upp)* = U(VIA, A*Upp)*

AVF
= (U[, UH) <U]*IIA> = U[AVI* + UUUI*IA.

But U}k]A = 0 since (UI*IA)(U;}A)* = UI*IAA*UU = U;IU[AzU?UH =0.

Hence A = U;AV}. The compact form of SVD holds.

Expand V7 to unitary V' = (V, Vir). Then A = U;AV} = (Ur, Urr) (ﬁ 8) (Vr, Vir)*™.
The full form of SVD holds.

Constructive proof approach 11
* A2 0 * A2 0 * 27/ *
By EVD, A*A=V 0 0 V* = (Vi Vi) 00 (Vi, Vir)* = VIA*V}.

Let Uy = AVIA™L. Then U;U; = AW A*AVIA™ = A"WrVIA2VAVIAT = 1.

A = AVV* = (AVy, AV;)V* = (UIA, AVi)V* = (UA, AVyp) (“;f)
II
= UAV} + AV V.

But AV;; = 0 since (AVir)*(AVir) = Vi A* AV = VEVIA2V Vi = 0.
Hence A = U;AVy. The compact form of SVD holds.
A0

Expand Uy to unitary (Ur, Urr). Then A = UrAV) = (Ur, Urr) (0 0) V1, Vir)*.
The full form of SVD holds.

Comment:

For SVD A and (ﬁ 8) are unique. But U, Uy, V and V; are not unique.

Ex1: If A has full row rank, then by SVD A = U(A, 0)V* = UAV}.

If A has full column rank, then by SVD A =U (ﬁ) V* =UAV*.
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2. Generalized inverse

(1) Definition
For A € C™*™ G € C™ "™ is a generalized inverse of A denoted as A~ if AGA = A.

(2) Existence, non-uniqueness and expressions
A0 % _ Al H 12 N
If A= U \%4 5 then A~ = 14 U*: H12, H21 and H22 .

0 0 Hy1 Hoyy
_ _ A0 . A 0y (A0
Proof Ge A = AGA = A — 0 0 V*GU 0 o) =\o o

V*GU=H A0 H11 H12 A 0 . A0
0 0 Hy1 Hoo 0o 0/ \0o O
1 N A=Y Hi
<— AHHA =A<+ H1 =A< V*GU =
Hy1  Hao
1
— G:V<A H12> U*

Hy1  Hao

(3) AA~ and A~ A are idempotent.
(AA7)? = (AA-A)A~ = AA- and (A= A)2 = A" (AA"A) = A~ A
A~ represents the set of all generalized inverses of A, or any individual G € A™.

-1
Ex2: A has full row rank= A =U(A, 0)V* = A" =V <§I ) U~.
21

A has full column rank = A =U <§> V= A" =V (A~!, Hpp)U".
A € C™*™ is nonand rank(4) =n = A =UAV* = A~ = VA~'U".

3. Generalized inverse and ordinary inverse

(1) Left-inverse and A~
AL is the collection of all left-inverses of A. If AL = (), then A¥ = A~.

Proof C: GE AP 4£()—=GA=1— AGA=A—=— G e A".

O: Al # () = A has full column rank = By SVD A =U <§> V*.

GeEA~ = G=V(A™Y, Hp)U* = GA=1 = G c AL
(2) Right-inverse and A~
A" is the collection of all right-inverses of A. If A% £ (), then A% = A~
Proof C: GEAR 4 )= AG=1=—= AGA=A— Gc A".
O: AR #£ () = A full row rank = By SVD A = U(A, 0)V*.

—1
GGA‘:>G:V<% )U*:>AG212>G€AR.
21

(3) Inverse and A~
Suppose A has inverse A™!. Then A=! = A~.

Proof AA7'A=A So Al c A~.
In Ex2 we see A =UAV* and A~ = VA~IU*. So AA- =A"A=1.
Hence A~ contains only one matrix that is A=



