L11 Singular values

- 1. Eigenvalue decomposition of Hermitian matrices
 - (1) Orthonormal matrices

For $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n} \langle A, B \rangle = \sum_{ij} \bar{b}_{ij} a_{ij} = \operatorname{tr}(B^*A)$ is an inner product. With this inner product

A is a unit matrix $\stackrel{def}{\Longleftrightarrow} ||A|| = 1 \Longleftrightarrow ||A||^2 = 1 \Longleftrightarrow \langle A, A \rangle = 1.$

A and B are orthogonal $\stackrel{\stackrel{\circ}{\longleftarrow}}{\Longleftrightarrow} \langle A, B \rangle = 0$ but $A \neq 0$ and $B \neq 0$.

Matrices $M_1, ..., M_n$ are orthonormal $\stackrel{def}{\iff} \langle M_i, M_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Ex1: If $U = (u_1, ..., u_n) \in C^{n \times n}$ is unitary, let $M_i = u_i u_i^* \in C^{n \times n}$, i = 1, ..., n.

Then (i) $M_i^* = M_i = M_i^2$ (ii) $\operatorname{rank}(M_i) = 1$ (iii) $M_1, ..., M_n$ are orthonormal.

- (i) $M_i^* = (u_i u_i^*)^* = u_i u_i^* = M_i$; $M_i M_i = (u_i u_i^*)(u_i u_i^*) = u_i u_i^* = M_i$;
- (ii) $\operatorname{rank}(M_i) = \operatorname{tr}(M_i) = \operatorname{tr}(u_i u_i^*) = \operatorname{tr}(u_i^* u_i) = \operatorname{tr}(1) = 1$
- (iii) $\langle M_i, M_i \rangle = \operatorname{tr}(M_i^* M_i) = \operatorname{tr}(M_i) = 1; \langle M_i, M_j \rangle = \operatorname{tr}(u_j u_i^* u_i u_i^*) = \operatorname{tr}(0) = 0.$
- (2) Spectral decomposition

EVD of $A = A^* \in C^{n \times n}$ expresses A as a LC of n orthonormal matrices

 $A = U\Lambda U^* = (u_1, ..., u_n)\operatorname{diag}(\lambda_1, ..., \lambda_n)(u_1, ..., u_n)^* = \lambda_1(u_1u_1^*) + \cdots + \lambda_n(u_nu_n^*).$

This expression is also called a spectral decomposition of A.

(3) Compact form of EVD

If $A^* = A \in C^{n \times n}$ has rank r, then $A = U_I \Lambda_r U_I^*$ where $U_I \in C^{n \times r}$ with $U_I^* U_I = I_r$ and $\Lambda_r = \operatorname{diag}(\lambda_1, ..., \lambda_r)$ with $\lambda_i \neq 0$ for i = 1, ..., r.

If $A = U\Lambda U^*$ has rank r, then Λ has rank r. So $\Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix}$ where $\Lambda_r = \operatorname{diag}(\lambda_1, ..., \lambda_r)$

with $\lambda_i \neq 0$ for i = 1, ..., r. Thus $A = (U_I, U_{II}) \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} U_I^* \\ U_{rr}^* \end{pmatrix} = U_I \Lambda_r U_I^*$.

Ex2: With $A = U_I \Lambda_r U_I^*$, by expanding U_I to unitary $U = (U_I, U_{II})$ and Λ_r to $\begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix}$

 $A = U_I \Lambda_r U_I^* = U \Lambda U^*$. This is a full form of EVD of A.

- 2. Definite and semi-definite matrices
 - (1) Recall definitions

 $A^* = A \in C^{n \times n}.$

 $A>0 \stackrel{def}{\Longleftrightarrow} x^*Ax>0$ for all $0\neq x\in C^n$; $A<0 \stackrel{def}{\Longleftrightarrow} x^*Ax<0$ for all $0\neq x\in C^n$

 $A \ge 0 \stackrel{def}{\iff} x^*Ax \ge 0 \text{ for all } 0 \ne x \in C^n; \qquad A \le 0 \stackrel{def}{\iff} x^*Ax \le 0 \text{ for all } 0 \ne x \in C^n.$

(2) Iff-conditions

 $A^* = A = X\Lambda X^*$ where $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ and X is unitary by EVD.

 $A > 0 \iff \lambda_i > 0 \text{ for all } i$

 $A < 0 \iff \lambda_i < 0 \text{ for all } i$ $A \le 0 \iff \lambda_i \le 0 \text{ for all } i.$ $A \ge 0 \Longleftrightarrow \lambda_i \ge 0 \text{ for all } i$

Proof Only show $A > 0 \iff \lambda_i > 0$ for all i

 \Rightarrow : $A = X\Lambda X^* > 0$ where $X = (x_1, ..., x_n)$ is unitary and $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$.

Then $0 < x_i^* A x_i = x_i^* X \Lambda X^* x_i = e_i' \Lambda e_i = \lambda_i$ for all i.

 $\Leftarrow: z \neq 0, z^*Az = (z^*X)\Lambda(X^*z) \xrightarrow{\underline{y=X^*z}} y^*\Lambda y = \sum_i \lambda_i |y_i|^2.$ $z \neq 0 \Longrightarrow y = X^*z \neq 0 \Longrightarrow \sum_i \lambda_i |y_i|^2 > 0. \text{ So } A > 0.$

1

- (3) Application: Definition of $A^{1/2}$ and $A^{-1/2}$. For $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ with $\lambda_i \geq 0$ for all i, define $\Lambda^{1/2} = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$; For $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ with $\lambda_i > 0$ for all i, define $\Lambda^{-1/2} = \operatorname{diag}(1/\sqrt{\lambda_i}, ..., 1/\sqrt{\lambda_n})$. For $0 \le A = X\Lambda X^*$ define $A^{1/2} = X\Lambda^{1/2}X^*$. Then $A^{1/2} \ge 0$ and $A^{1/2}A^{1/2} = A$. For $0 < A = X\Lambda X^*$ define $A^{-1/2} = X\Lambda^{-1/2}X^*$. Then $A^{-1/2} > 0$, $A^{-1/2}A^{-1/2} = A^{-1}$.
- 3. Singular values of $A \in C^{m \times n}$
 - (1) Eigenvalues of AA^* and A^*A For $A \in C^{m \times n}$, all eigenvalues of $AA^* \in C^{m \times m}$ and $A^*A \in C^{n \times n}$ are ≥ 0 .

Proof By EVD for Hermitian AA^* and A^*A , $AA^* = U\Lambda U^*$ and $A^*A = V\Gamma V^*$. But $AA^* \geq 0$ and $A^*A \geq 0$ since $x^*AA^*x = ||A^*x||^2 \geq 0$ for all $x \in C^m$ and $y^*A^*Ay = ||Ay||^2 \ge 0$ for all $y \in C^n$. So all diagonal elements of Λ and Γ are ≥ 0 .

(2) Number of positive eigenvalues of AA^* and A^*A For $A \in C^{m \times n}$ with rank r, AA^* and A^*A have r positive eigenvalues.

Proof (3) of 3 in L07 shows that $rank(AA^*) = rank(A^*A) = rank(A) = r$. Thus in EVDs $AA^* = U\Lambda U^*$ and $A^*A = V\Gamma V^*$, $\Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m\times m}$ and $\Gamma = \begin{pmatrix} \Gamma_r & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{n \times n}$, and all diagonal elements of $\Lambda_r \in \mathbb{R}^{r \times r}$ and $\Gamma_r \in \mathbb{R}^{r \times r}$ are

(3) Distinct positive eigenvalues of AA^* and A^*A AA^* and A^*A share the same set of distinct eigenvalues

Proof For " $\delta^2 > 0$ is an eigenvalue for $AA^* \iff \delta^2 > 0$ is an eigenvalue for A^*A " only show \Rightarrow : If $\delta^2 > 0$ is an eigenvalue for AA^* , then $AA^*x = \delta^2 x$, $x \neq 0$. So $(A^*A)(A^*x) = \delta^2(A^*x)$. Here $A^*x \neq 0$ since otherwise

$$A^*x = 0 \Longrightarrow 0 = AA^*x = \delta^2x \Longrightarrow x = 0 \otimes .$$

Thus $\delta^2 > 0$ is an eigenvalue for A^*A .

(4) $\delta^2 > 0$ is an eigenvalue for AA^* and A^*A with multiplicity r and s. Then r = s.

Pf: $\delta^2 > 0$ is an eigenvalue of AA^* with multiplicity r. There exists $B \in C^{m \times r}$ with $B^*B = I_r$ such that $(AA^*)B = \delta^2 B$. So $(A^*A)(A^*B) = \delta^2 (A^*B)$ where $A^*B \in C^{n \times r}$ with $(A^*B)^*(A^*B) = B^*AA^*B = B^*\delta^2B = \delta^2I_r$. Thus r < s. $\delta^2 > 0$ is an eigenvalue of A^*A with multiplicity s. There exists $D \in C^{n \times s}$ with $D^*D = I_s$ such that $(A^*A)D = \delta^2D$. So $(AA^*)(AD) = \delta^2(AD)$ where $(AD)^*(AD) = D^*A^*AD = D^*\delta^2D = \delta^2I_s$. Thus $s \leq r$. It follows that r = s.

(5) Singular values of A

For $A \in C^{m \times n}$ with rank $r, AA^* \in C^{m \times m}$ and $A^*A \in C^{n \times n}$ share positive-eigenvalue matrix $\Delta^2 = \operatorname{diag}(\delta_1^2, ..., \delta_r^2)$ with $\delta_1 \ge \cdots \ge \delta_r > 0$. Here $\delta_1 \ge \cdots \ge \delta_r > 0$ are positive eigenvalues for A and Δ is the positive-singular value matrix.

Ex3: Find positive-singular matrix for
$$A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
. Two methods.
$$AA' = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \Longrightarrow |AA' - \lambda I| = \lambda(\lambda - 5) \Longrightarrow \delta^2 = 5 \Longrightarrow \Delta^2 = 5, \ \Delta = \sqrt{5}.$$

$$A'A = 5 \Longrightarrow \delta^2 = 5 \Longrightarrow \Delta^2 = 5, \ \Delta = \sqrt{5}.$$

L12 Singular value decomposition and generalized inverse

- 1. Singular value decomposition
 - (1) Singular value decomposition (SVD) For $A \in C^{m \times n}$ with rank(A) = r

value matrix for A.

- (i) Full form: $A = U \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$ where $U \in C^{m \times m}$ and $V \in C^{n \times n}$ are unitary and in $\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} \in R^{m \times n}$ $\Delta = \begin{pmatrix} \delta_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \delta_r \end{pmatrix}$ with $\delta_1 \geq \cdots \geq \delta_r > 0$ is positive-singular
- (ii) Compact form: $A = U_I \Delta V_I^*$ where $U_I \in C^{m \times r}$, $V_I \in C^{n \times r}$, $U_I^* U_I = I_r = V_I^* V_I$, and $\Delta \in R^{r \times r}$ is positive-singular value matrix for A.
- (2) Constructive proof approach I By EVD $AA^* = U \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} U^* = (U_I, U_{II}) \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} (U_I, U_{II})^* = U_I \Delta^2 U_I^*.$ Let $V_I = A^* U_I \Delta^{-1}$. Then $V_I^* V_I = \Delta^{-1} U_I^* A A^* U_I \Delta^{-1} = \Delta^{-1} U_I^* U_I \Delta^2 U_I^* U_I \Delta^{-1} = I_r.$

$$A = UU^*A = U(A^*U)^* = U(A^*U_I, A^*U_{II})^* = U(V_I\Delta, A^*U_{II})^*$$
$$= (U_I, U_{II}) \begin{pmatrix} \Delta V_I^* \\ U_{II}^*A \end{pmatrix} = U_I\Delta V_I^* + U_{II}U_{II}^*A.$$

But $U_{II}^*A = 0$ since $(U_{II}^*A)(U_{II}^*A)^* = U_{II}^*AA^*U_{II} = U_{II}^*U_I\Delta^2U_I^*U_{II} = 0$. Hence $A = U_I\Delta V_I^*$. The compact form of SVD holds.

Expand V_I to unitary $V = (V_I, V_{II})$. Then $A = U_I \Delta V_I^* = (U_I, U_{II}) \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} (V_I, V_{II})^*$. The full form of SVD holds.

(3) Constructive proof approach II

By EVD,
$$A^*A = V \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} V^* = (V_I V_{II}) \begin{pmatrix} \Delta^2 & 0 \\ 0 & 0 \end{pmatrix} (V_I, V_{II})^* = V_I \Delta^2 V_I^*.$$

Let $U_I = AV_I \Delta^{-1}$. Then $U_I^*U_I = \Delta^{-1} V_I^* A^* A V_I \Delta^{-1} = \Delta^{-1} V_I^* V_I \Delta^2 V_I^* V I \Delta^{-1} = I_r.$

$$A = AVV^* = (AV_I, AV_{II})V^* = (U_I \Delta, AV_{II})V^* = (U_I \Delta, AV_{II}) \begin{pmatrix} V_I^* \\ V_{II}^* \end{pmatrix}$$
$$= U_I \Delta V_I^* + AV_{II}V_{II}^*.$$

But $AV_{II} = 0$ since $(AV_{II})^*(AV_{II}) = V_{II}^*A^*AV_{II} = V_{II}^*V_I\Delta^2V_I^*V_{II} = 0$. Hence $A = U_I\Delta V_I^*$. The compact form of SVD holds.

Expand U_I to unitary (U_I, U_{II}) . Then $A = U_I \Delta V_I^* = (U_I, U_{II}) \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} (V_I, V_{II})^*$. The full form of SVD holds.

(4) Comment:

For SVD Δ and $\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix}$ are unique. But U, U_I, V and V_I are not unique.

Ex1: If A has full row rank, then by SVD $A = U(\Delta, 0)V^* = U\Delta V_I^*$. If A has full column rank, then by SVD $A = U\begin{pmatrix} \Delta \\ 0 \end{pmatrix}V^* = U_I\Delta V^*$.

2. Generalized inverse

- (1) Definition For $A \in C^{m \times n}$ $G \in C^{n \times m}$ is a generalized inverse of A denoted as A^- if AGA = A.
- (2) Existence, non-uniqueness and expressions

If
$$A = U\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*$$
, then $A^- = \left\{ V\begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U^* : H_{12}, H_{21} \text{ and } H_{22} \right\}$.

Proof $G \in A^- \iff AGA = A \iff \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} V^*GU\begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix}$

$$\stackrel{V^*GU=H}{\iff} \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix}$$

$$\iff \Delta H_{11}\Delta = \Delta \iff H_{11} = \Delta^{-1} \iff V^*GU = \begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

$$\iff G = V\begin{pmatrix} \Delta^{-1} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} U^*$$

(3) AA^- and A^-A are idempotent. $(AA^-)^2 = (AA^-A)A^- = AA^-$ and $(A^-A)^2 = A^-(AA^-A) = A^-A$. A^- represents the set of all generalized inverses of A, or any individual $G \in A^-$.

Ex2: A has full row rank
$$\Longrightarrow A = U(\Delta, 0)V^* \Longrightarrow A^- = V\begin{pmatrix} \Delta^{-1} \\ H_{21} \end{pmatrix}U^*.$$
A has full column rank $\Longrightarrow A = U\begin{pmatrix} \Delta \\ 0 \end{pmatrix}V^* \Longrightarrow A^- = V(\Delta^{-1}, H_{12})U^*.$
 $A \in C^{n \times n}$ is nonand rank $(A) = n \Longrightarrow A = U\Delta V^* \Longrightarrow A^- = V\Delta^{-1}U^*.$

3. Generalized inverse and ordinary inverse

(1) Left-inverse and A^-

 A^L is the collection of all left-inverses of A. If $A^L \neq \emptyset$, then $A^L = A^-$.

$$G \in A^- \Longrightarrow G = V(\Delta^{-1}, H_{12})U^* \Longrightarrow GA = I \Longrightarrow G \in A^L.$$

(2) Right-inverse and A^-

 A^{R} is the collection of all right-inverses of A. If $A^{R} \neq \emptyset$, then $A^{R} = A^{-}$.

Proof
$$\subset$$
: $G \in A^R \neq \emptyset \Longrightarrow AG = I \Longrightarrow AGA = A \Longrightarrow G \in A^-$.

$$\supset : A^R \neq \emptyset \Longrightarrow A$$
 full row rank \Longrightarrow By SVD $A = U(\Delta,\, 0) V^*$

$$G \in A^{-} \Longrightarrow G = V \begin{pmatrix} \Delta^{-1} \\ H_{21} \end{pmatrix} U^{*} \Longrightarrow AG = I \Longrightarrow G \in A^{R}.$$

(3) Inverse and A^-

Suppose A has inverse A^{-1} . Then $A^{-1} = A^{-}$.

Proof
$$AA^{-1}A = A$$
. So $A^{-1} \in A^{-}$.

In Ex2 we see $A=U\Delta V^*$ and $A^-=V\Delta^{-1}U^*$. So $AA^-=A^-A=I$. Hence A^- contains only one matrix that is A^{-1} .