
L09 Diagonalizable matrices

1. Similar matrices

(1) Definition

A is similar to B
def⇐⇒ There exists X such that A = XBX−1.

A, B, X are all n× n matrices and X is non-singular.

(2) “Similar to” is a relation of equivalence

(i) Reflexivity: A is similar to A since A = IAI−1

(ii) Symmetry: A is similar to B ⇐⇒ B is similar to A
“ ⇒ ” only: A is similar to B =⇒ A = XBX−1 =⇒ B = X−1A(X−1)−1

=⇒ B is similar to A.

(iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C.
A = XBX−1 and B = Y CY −1 =⇒ A = (XY )C(XY )−1.

(3) Properties
If A and B are similar, i.e., A = XBX−1, then A, B share ranks, determinants, trace,
characteristic polynomials and hence eigenvalues.

Pf: rank(A) = rank(XBX−1) = rank(B). |A| = |XBX−1| = |X| |B| |X−1| = |B|.
tr(A) = tr(XBX−1) = tr(BX−1X) = tr(B).
|A− λI| = |XBX−1 − λXX−1| = |X| |B − λI| |X−1| = |B − λI|.

Ex1: If A = XBX−1, with a polynomial p(t), p(A) = Xp(B)X−1.
For example with p(t) = 3t2 − 2t+ 4,
p(A) = 3A2 − 2A+ 4I = 3(XBX−1)(XBX−1)− 2(XBX−1) + 4XX−1

= X(3B2 − 2B + 4I)X−1 = Xp(B)X−1.

2. Diagonalizable matrices

(1) Diagonal matrix
Let Λ = diag(λ1, ..., λn). Then the eigenvalues of Λ are λ1, ..., λn;
rank(Λ) = # of non-zero λi; det(Λ) = λ1 · · ·λn; tr(Λ) = λ1 + · · ·+ λn;
With polynomial p(·), p(Λ) = diag(p(λ1), ..., p(λn)).

Ex2: With Λ = diag(λ1, λ2), Λ
2 − 2 = diag(λ2

1 − 2, λ2
2 − 2).

(2) Diagonalizable matrices

A is diagonalizable
def⇐⇒ A is similar to a diagonal matrix

(3) Properties
If A is similar to Λ, i.e., A = XΛX−1, then the eigenvalues of A are λ1, ..., λn;
rank(A) = # of non-zero λi; det(A) = λ1 · · ·λn; p(A) = Xdiag(p(λ1), ..., p(λn))X

−1.

(4) Sufficient and necessary condition for A to be diagonalizable

A ∈ Cn×n is diagonalizable ⇐⇒ A ∈ Cn×n has n LI eigenvectors.

Proof. ⇒: If A = XΛX−1, then AX = XΛ and |X| ̸= 0.
So the columns of X are n LI eigenvectors of A.

⇐: Suppose Axi = λixi, xi ̸= 0 and x1, ..., xn are LI.
Let X = (x1, ..., xn) and Λ = diag(λ1, ..., λn).
Then AX = XΛ and X is non-singular. Therefore A = XΛX−1.
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(5) More iff-conditions
A is diagonlizable ⇐⇒ di = ri for all i ⇐⇒ di = ri for all ri > 1.

3. Schur-decomposition

(1) Normal matrices
A ∈ Cn×n is a normal matrix if A = UΛU∗ where U is unitary and Λ is diagonal.
Clearly, if A is normal, then A is diagonalizable. So Let N and D be the collections of
all normal matrices and diagonalizable matrices respectively. Then

N ⊂ D ⊂ Cn×n.

(2) Schur-decomposition
For A ∈ Cn×n there exist unitary U ∈ Cn×n and upper-triangular T ∈ Cn×n such that

A = UTU∗.

Comment: Schur-decomposition is also called Schur-triangulation. With this decom-
position we are short in evidence to call A normal.

Proof We show the decomposition by induction on n.
When n = 1, A ∈ C1×1 is upper-triangular and A = 1A1∗. Decomposition holds.
Assume the decomposition is true when n = k. Consider A ∈ C(k+1)×(k+1).
Suppose A has eigenvalue λ with a unit eigenvector y. Let Y = (y, Y2) be unitary.

A = Y Y ∗AY Y ∗ = Y

(
y∗

Y ∗
2

)
(λy, AY2)Y

∗ = Y

(
λ y∗AY2
0 Y ∗

2 AY2

)
Y ∗

∗
= Y

(
λ y∗AY2
0 U1T1U

∗
1

)
Y ∗ = Y

(
1 0
0 U1

)λ y∗AY2U1

0 T1

(
1 0
0 U∗

1

)
Y ∗

= UTU∗.

∗ : For Y ∗
2 AY2 ∈ Ck×k, by induction assumption Y ∗

2 AU2 = U1T1U
∗
1 where T1 is

upper-triangular and U1 is unitary.

T =

(
λ y∗AY2U1

0 T1

)
is upper-triangular and U = Y

(
1 0
0 U1

)
is unitary since UU∗ =

Ik+1. Thus the decomposition holds for n = k + 1.

(3) Properties
By Schur decomposition, A = UTU∗, A and T are similar and hence A and T share
eigenvalues, ranks, determinants, trace.
T has eigenvalues t11, ..., tnn; T has trace t11 + · · · + t11; T has determinants t11 · · · tnn;
But the rank of T is not the number of non-zero diagonal elements.

Ex3: T =

1 2 0
0 0 1
0 0 0

 is upper-triangular with one non-zero diagonal element. But

rank(T ) = 2.
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L10 Normal matrices and Hermitian matrices

1. Normal matrices

(1) Recall

A is normal
def⇐⇒ A = XΛX∗ where X is unitary and Λ is diagonal.

(2) Iff-conditions via eigenvectors
For A ∈ Cn×n, the followings are equivalent

(i) A is normal

(ii) A has n orthonormal eigenvectors

(iii) A has n orthogonal eigenvectors

Proof (i)⇒(ii): If (i), then A = XΛX∗ and X∗ = X−1. So AX = XΛ, X∗ = X−1.
Thus the n columns of X are n orthonormal eigenvectors of A.

(ii)⇒(iii): The n orthonormal eigenvectors are n orthogonal eigenvectors.

(iii)⇒(i): Dividing each of n orthogonal eigenvectors by its norm we obtain n or-
thonormal eigenvectors, x1, ..., xn. Let X = (x1, ..., xn). Then AX = XΛ, X is
unitary. Hence A = XΛX∗.

Comment: A is normal if di = ri for all i = 1, ..., k, and SA(λi) ⊥ SA(λj) for λi ̸= λj .

Ex: Λ =

(
1 1
0 2

)
with two simple eigenvalues 1 and 2 is diagonalizable.

But SA(1) = Span

[(
1
0

)]
and SA(2) =

[(
1/
√
2

1/
√
2

)]
are not perpendicular.

So A does not have two orthogonal eigenvectors. Thus A is not normal.

(3) A simple sufficient and necessary condition

A is a normal matrix ⇐⇒ A∗A = AA∗.

Pf: ⇒: A is normal =⇒ A = XΛX∗ =⇒ A∗A = XΛ∗ΛX∗ = XΛΛ∗X∗ = AA∗

⇐: By Schur decomposition A = XTX∗˙

A∗A = AA∗ =⇒ TT ∗ = T ∗T
def
== H

∗∗
=⇒ T = Λ =⇒ A = XΛX∗.

∗∗ : Examining hii, i = 1, ..., n, leads to H = Λ. For example consider h11 in
t11 0 · · · 0
t12 t22 · · · 0
...

...
. . .

...
t1n t2n · · · tnn



t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 =


t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn



t11 0 · · · 0
t12 t22 · · · 0
...

...
. . .

...
t1n t2n · · · tnn


h11 = |t11|2 = |t11|2 + |t12|2 + · · ·+ |t1n|2 =⇒ t12 = · · · = t1n = 0 · · ·

2. Hermitian matrices and real symmetric matrices

(1) Hermitian matrices are normal matrices

A is Hermitian
def⇐⇒ A∗ = A =⇒ A∗A = AA = AA∗ ⇐⇒ A is normal
def⇐⇒ A = UΛU∗ where Λ is diagonal and U is unitary.

In Cn×n let RS, H, N and D be the collections of all real symmetric matrices, Hermitian
matrices, normal matrices and diagonalizable matrices. Then

RS ⊂ H ⊂ N ⊂ D ⊂ Cn×n.
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(2) Eigenvalue decomposition
For diagonalizable A, A = XΛX−1 is eigenvalue decomposition where Λ is eigenvalue
matrix and X is eigenvector matrix. For diagonalizable A select di LI eigenvectors from
SA(λi) = N(A− λiI) to form X. For normal A select di orthonormal eigenvectors from
SA(λi) to form unitary X.

(3) Eigenvalues of Hermitian A
Eigenvalues of A = A∗ are real

Proof If Ax = λx and x ̸= 0, then x∗Ax = λx∗x and λ = x∗Ax
x∗x where x∗x = ∥x∥2 > 0.

But x∗Ax = (x∗Ax)∗ = x∗Ax. So x∗Ax and consequently λ are both real.

(4) Eigenvectors of Hermitian A
For A∗ = A, SA(λi) ⊥ SA(λj) for λi ̸= λj

Proof Axi = λixi, xi ̸= 0; Axj = λjxj , xj ̸= 0; and λi ̸= λj .
=⇒ x∗iAxj = x∗iλjxj = λj(x

∗
ixj); x

∗
iAxj = (Axi)

∗xj = (λixi)
∗xj = λi(x

∗
ixj).

So 0 = (λi − λj)(x
∗
ixj) =⇒ x∗ixj = 0 =⇒ xi ⊥ xj .

(5) For real symmetric A
A = A = A′, the eigenvectors can be required to be real. Thus in A = XΛX ′, X is
orthogonal, i.e., X ′ = X−1.

3. Examples

Ex1: Determine if A =

(
0 1
−4 0

)
is normal or diagonalizable. If yes, find correspoding

Eigenvalue decompositions. (A is real, but not symmetric).

(i) A′A =

(
16 0
0 1

)
̸=

(
1 0
0 16

)
= AA′. So, A is not normal.

(ii) |A− λI| =
∣∣∣∣−λ 1
−4 −λ

∣∣∣∣ = λ4 + 4 = (λ− 2i)(λ+ 2i) =⇒ λ1 = 2i and λ2 = −2i.

Because all eigenvalues are simple ones, A is diagonalizable.

(iii) A− λ1I −→
(
−2i 1
0 0

)
=⇒ x1 =

(
1
2i

)
; A− λ2I −→

(
2i 1
0 0

)
=⇒ x2 =

(
1

−2i

)
Let X =

(
1 1
2i −2i

)
, Λ =

(
2i 0
0 −2i

)
. Then A = XΛX−1.

Ex2: A =

(
0 1
1 0

)
is real symmetric and hence is normal.

|A− λI| = 0 =⇒ λ1 = 1 and λ2 = −1;

A− λ1I →
(
1 −1
0 0

)
=⇒ u1 =

1√
2

(
1
1

)
; A− λ2I →

(
1 1
0 0

)
=⇒ u2 =

1√
2

(
1
−1

)
.

Let U = (u1, u2) =
1√
2

(
1 1
1 −1

)
and Λ =

(
1 0
0 −1

)
. Then A = UΛU ′.

Ex3: A =

(
1 1
0 1

)
. Does A have two orthogonal eigenvectors? LI eigenvectors?

A′A ̸= AA′. So A does not have two orthogonal eigenvectors.
A has eigenvalue λ = 1 with r = 2. But d = dim[SA(1)] = dim[N(A − I)] = 2 − 1 ̸= r.
So A does not have 2 LI eigenvectors.

Ex4: Diagonalizable A ∈ Cn×n has eigenvalue λ1, .., λn. Find eigenvalues for A2.
By EVD, A = XΛX−1. So A2 = XΛ2X−1. Thus A2 have eigenvalues λ2

1, ..., λ
2
n.
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