L09 Diagonalizable matrices

1. Similar matrices

(1) Definition
Ais similar to B << There exists X such that A = XBX ",
A, B, X are all n x n matrices and X is non-singular.
(2) “Similar to” is a relation of equivalence
(i) Reflexivity: A is similar to A since A = TAI!
(ii) Symmetry: A is similar to B <= B is similar to A
“=7 only: Aissimilarto B = A=XBX != B=X1A(X"1)"!
—> B is similar to A.
(iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C.
A=XBX 'and B=YCY ! = A= (XY)O(XY)"L.
(3) Properties
If A and B are similar, i.e., A= XBX !, then A, B share ranks, determinants, trace,
characteristic polynomials and hence eigenvalues.
Pf: rank(A) = rank(XBX ') =rank(B). |A|=|XBX ! =|X||B||X"!|=|B|
tr(A) = tr(XBX ') = tr(BX ' X) = tr(B).
|A— M| =|XBX ! - AXX"!|=|X||B-\||X"=|B-\|.
Ex1: If A= XBX ™! with a polynomial p(t), p(4) = Xp(B)X L.
For example with p(t) = 3t> — 2t + 4,
p(A) = 342 -24+4I =3(XBX H(XBX 1) —-2(XBX 1) 4+4xX!
= X(3B?-2B+40)X ' = Xp(B)X~ L.

2. Diagonalizable matrices

(1) Diagonal matrix
Let A = diag(A1, ..., \n). Then the eigenvalues of A are Ap, ..., A\p;
rank(A) = # of non-zero A\;; det(A) = Ay -+ Ap; tr(A) = A+ -+ + A\p;
With polynomial p(-), p(A) = diag(p(A1), ..., p(An))-
Ex2: With A = diag(\1, A2), A% — 2 = diag(A\} — 2, A3 — 2).
(2) Diagonalizable matrices
Ais diagonalizable& A is similar to a diagonal matrix
(3) Properties
If A is similar to A, i.e., A = XAX ™! then the eigenvalues of A are A1, ..., \p;
rank(A) = # of non-zero \;; det(A4) = A1 -+ \p; p(A) = Xdiag(p(\1), ..., p(An)) X L.

(4) Sufficient and necessary condition for A to be diagonalizable

A € O™ is diagonalizable <= A € C"™*" has n LI eigenvectors.

Proof. =: If A= XAX !, then AX = XA and |X| # 0.
So the columns of X are n LI eigenvectors of A.
<: Suppose Ax; = \jx;, x; # 0 and z1, ..., x, are LI
Let X = (1, ...,z,) and A = diag(A1, ..., A\p)-
Then AX = XA and X is non-singular. Therefore A = XAX 1.



(5) More iff-conditions
A is diagonlizable <= d; = r; for all i <= d; = r; for all r; > 1.

3. Schur-decomposition

(1) Normal matrices
A € C™™ is a normal matrix if A = UAU* where U is unitary and A is diagonal.
Clearly, if A is normal, then A is diagonalizable. So Let A/ and D be the collections of
all normal matrices and diagonalizable matrices respectively. Then
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(2) Schur-decomposition
For A € C™*™ there exist unitary U € C™*™ and upper-triangular 7" € C™*" such that

A=UTU".

Comment: Schur-decomposition is also called Schur-triangulation. With this decom-
position we are short in evidence to call A normal.

Proof We show the decomposition by induction on n.
When n =1, A € C'*! is upper-triangular and A = 141*. Decomposition holds.
Assume the decomposition is true when n = k. Consider A € Ck+Dx(k+1),

Suppose A has eigenvalue A with a unit eigenvector y. Let Y = (y, Y2) be unitary.
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= UTU".

x @ For Y5 AYs € CFxk, by induction assumption Y5 AUy = UiThU; where Ty is
upper-triangular and Uj is unitary.

Ayt AYL Uy
T =

0 T
Ii 1. Thus the decomposition holds for n = &k + 1.
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) is upper-triangular and U = Y (0 U,

> is unitary since UU* =

(3) Properties
By Schur decomposition, A = UTU*, A and T are similar and hence A and T share
eigenvalues, ranks, determinants, trace.
T has eigenvalues t11, ..., tn,; T has trace t11 + - -+ + t11; T has determinants £11 - - - tpn;
But the rank of T is not the number of non-zero diagonal elements.
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Ex3: T = [0 0 1] is upper-triangular with one non-zero diagonal element. But
000
rank(7") = 2.



L10 Normal matrices and Hermitian matrices

1. Normal matrices

(1) Recall

A is normal g A = XAX" where X is unitary and A is diagonal.
(2) Iff-conditions via eigenvectors

For A € C™*™, the followings are equivalent

(i) A is normal

(ii) A has n orthonormal eigenvectors

(iii) A has n orthogonal eigenvectors

Proof (i)=(ii): If (i), then A = XAX* and X* = X~ 1. So AX = XA, X*= X1

Thus the n columns of X are n orthonormal eigenvectors of A.
(ii)=(iii): The n orthonormal eigenvectors are n orthogonal eigenvectors.

(iii)=-(i): Dividing each of n orthogonal eigenvectors by its norm we obtain n or-
thonormal eigenvectors, 1, ..., z,. Let X = (x1,...,x,). Then AX = XA, X is
unitary. Hence A = XAX*.

Comment: A is normal if d; =r; for all i = 1,...,k, and Sa(N\;) L Sa(A;) for A; # A;j.

11
> with two simple eigenvalues 1 and 2 is diagonalizable.

0 2
But Sx(1) = Span [(éﬂ and S, (2) = [G;g)] are not. perpendicular.

So A does not have two orthogonal eigenvectors. Thus A is not normal.

Ex: A-(

(3) A simple sufficient and necessary condition
A is a normal matrix <= A*A = AA*.

Pf: =: Aisnormal = A = XAX* — A*A = XA*AX" = XAA*X* = AA*
<: By Schur decomposition A = XTX™*
A A=A =TT =T T2 g 2 7= A — A= XAX".
x% : Examining h;;, i = 1,...,n, leads to H = A. For example consider hi; in

tn 0 - 0 tin tiz - tim tin tiz - tin tin 0 0

tiz  t22 - 0 0 tog -+ ton 0 tog -+ ton tig  ta2 - 0

fln E2n e znn 0 0 e tnn 0 0 e tnn E1n %2n e Enn
hi1 =t = tu)? + [tz + -+ |t = tiz = =t1, =0---

2. Hermitian matrices and real symmetric matrices

(1) Hermitian matrices are normal matrices
. " d .
Ais Hermitian 45 A* = A = A*A = AA = AA* = A is normal

g A =UAU* where A is diagonal and U is unitary.
In C™*™ let RS, H, N and D be the collections of all real symmetric matrices, Hermitian
matrices, normal matrices and diagonalizable matrices. Then

RSCHCNCDcC™™



(2) Eigenvalue decomposition
For diagonalizable A, A = XAX ! is eigenvalue decomposition where A is eigenvalue
matrix and X is eigenvector matrix. For diagonalizable A select d; LI eigenvectors from
Sa(Ai) = N(A—\I) to form X. For normal A select d; orthonormal eigenvectors from
Sa(A;) to form unitary X.

(3) Eigenvalues of Hermitian A
Eigenvalues of A = A* are real

Proof If Az = Az and = # 0, then z*Az = Az*z and A = £AZ where z*z = ||z]|*> > 0.

R, T*T
But 2*Az = (z*Az)* = 2" Az. So x* Az and consequently A are both real.

(4) Eigenvectors of Hermitian A
For A* = A, SA()\Z) 1L SA()\j) for )\i 75 )\j
Proof Ax; = N\jx;, x; # 0; Ax; = Njzj, x; # 0; and \; # A;j.
- .%';-kij = a:;‘)\jxj = )\j(&’?fﬂj); foa:j = (A:Cz)*flfj = ()\le)*l'j = )\Z<Q?:<.’L'])
So 0= ()\1 — )\J)(xfx]) — CE;l‘j =0=ux; L Zj.
(5) For real symmetric A
A = A = A, the eigenvectors can be required to be real. Thus in A = XAX', X is
orthogonal, i.e., X’ = XL

3. Examples

0
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Eigenvalue decompositions. (A is real, but not symmetric).

(i) A/A = (106 (1)> # <(1) 106> = AA'. So, A is not normal.

Ex1: Determine if A = < ) is normal or diagonalizable. If yes, find correspoding

A1
4 =X
Because all eigenvalues are simple ones, A is diagonalizable.

—2¢ 1 1 2¢ 1 1
(111)A—)\1]—><0 0>:>.731—<2Z.>, A—)\QI—><O O>:>x2_<—2i>

(1 1 (20 0 _ -1
LetX—(Qi —2i>’A_<O _2Z,>.ThenA—XAX .

(ii) |A = M| = ’: =AM 4+4=(\—2)(A+2i) = A\ = 2i and \y = —2i.

Ex2: A= <(1) (1)> is real symmetric and hence is normal.

|JA—AX|=0= A1 =1and A2 = —1;

1 -1 (1) 11 (1
A—A1[—>(0 0>:>U1—\/§(1>, A_)\2I_><O O>:>UQ—\/§<_1).

1 1 1 0
— p— 1 — = /
Let U = (uy,u2) = 2<1 _1> and A (0 _1>. Then A = UAU’.
Ex3: A= (1) 1) Does A have two orthogonal eigenvectors? LI eigenvectors?

A’A# AA'. So A does not have two orthogonal eigenvectors.
A has eigenvalue A = 1 with r = 2. But d = dim[S4(1)] = dim[N(A—-I)] =2 -1 #r.
So A does not have 2 LI eigenvectors.

Ex4: Diagonalizable A € C™*™ has eigenvalue \p, .., A,. Find eigenvalues for A?.
By EVD, A= XAX ! So A2 = XA2X~!. Thus A? have eigenvalues \?, ..., \2

n*



