L09 Diagonalizable matrices

1. Similar matrices

(1) Definition

A is similar to $B \stackrel{def}{\iff}$ There exists X such that $A = XBX^{-1}$. A, B, X are all $n \times n$ matrices and X is non-singular.

- (2) "Similar to" is a relation of equivalence
 - (i) Reflexivity: A is similar to A since $A = IAI^{-1}$
 - (ii) Symmetry: A is similar to $B \iff B$ is similar to A" \Rightarrow " only: A is similar to $B \implies A = XBX^{-1} \implies B = X^{-1}A(X^{-1})^{-1}$ $\implies B$ is similar to A.
 - (iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C. $A = XBX^{-1}$ and $B = YCY^{-1} \Longrightarrow A = (XY)C(XY)^{-1}$.
- (3) Properties

If A and B are similar, i.e., $A = XBX^{-1}$, then A, B share ranks, determinants, trace, characteristic polynomials and hence eigenvalues.

Pf:
$$\operatorname{rank}(A) = \operatorname{rank}(XBX^{-1}) = \operatorname{rank}(B)$$
. $|A| = |XBX^{-1}| = |X| |B| |X^{-1}| = |B|$. $\operatorname{tr}(A) = \operatorname{tr}(XBX^{-1}) = \operatorname{tr}(BX^{-1}X) = \operatorname{tr}(B)$. $|A - \lambda I| = |XBX^{-1} - \lambda XX^{-1}| = |X| |B - \lambda I| |X^{-1}| = |B - \lambda I|$.

Ex1: If $A = XBX^{-1}$, with a polynomial p(t), $p(A) = Xp(B)X^{-1}$.

For example with $p(t) = 3t^2 - 2t + 4$,

$$p(A) = 3A^2 - 2A + 4I = 3(XBX^{-1})(XBX^{-1}) - 2(XBX^{-1}) + 4XX^{-1}$$
$$= X(3B^2 - 2B + 4I)X^{-1} = Xp(B)X^{-1}.$$

2. Diagonalizable matrices

(1) Diagonal matrix

Let $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Then the eigenvalues of Λ are $\lambda_1, ..., \lambda_n$; rank(Λ) = # of non-zero λ_i ; det(Λ) = $\lambda_1 \cdots \lambda_n$; tr(Λ) = $\lambda_1 + \cdots + \lambda_n$; With polynomial $p(\cdot)$, $p(\Lambda) = \operatorname{diag}(p(\lambda_1), ..., p(\lambda_n))$.

Ex2: With $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2), \Lambda^2 - 2 = \operatorname{diag}(\lambda_1^2 - 2, \lambda_2^2 - 2).$

(2) Diagonalizable matrices

A is diagonalizable $\stackrel{def}{\Longleftrightarrow} A$ is similar to a diagonal matrix

(3) Properties

If A is similar to Λ , i.e., $A = X\Lambda X^{-1}$, then the eigenvalues of A are $\lambda_1, ..., \lambda_n$; rank(A) = # of non-zero λ_i ; det $(A) = \lambda_1 \cdots \lambda_n$; $p(A) = X \operatorname{diag}(p(\lambda_1), ..., p(\lambda_n)) X^{-1}$.

(4) Sufficient and necessary condition for A to be diagonalizable

 $A \in C^{n \times n}$ is diagonalizable $\iff A \in C^{n \times n}$ has n LI eigenvectors.

Proof. \Rightarrow : If $A = X\Lambda X^{-1}$, then $AX = X\Lambda$ and $|X| \neq 0$. So the columns of X are n LI eigenvectors of A.

$$\Leftarrow$$
: Suppose $Ax_i = \lambda_i x_i, \ x_i \neq 0$ and $x_1, ..., x_n$ are LI.
Let $X = (x_1, ..., x_n)$ and $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$.
Then $AX = X\Lambda$ and X is non-singular. Therefore $A = X\Lambda X^{-1}$.

1

(5) More iff-conditions

A is diagonlizable \iff $d_i = r_i$ for all $i \iff$ $d_i = r_i$ for all $r_i > 1$.

3. Schur-decomposition

(1) Normal matrices

 $A \in C^{n \times n}$ is a normal matrix if $A = U\Lambda U^*$ where U is unitary and Λ is diagonal. Clearly, if A is normal, then A is diagonalizable. So Let $\mathcal N$ and $\mathcal D$ be the collections of all normal matrices and diagonalizable matrices respectively. Then

$$\mathcal{N} \subset \mathcal{D} \subset C^{n \times n}$$
.

(2) Schur-decomposition

For $A \in C^{n \times n}$ there exist unitary $U \in C^{n \times n}$ and upper-triangular $T \in C^{n \times n}$ such that

$$A = UTU^*$$
.

Comment: Schur-decomposition is also called Schur-triangulation. With this decomposition we are short in evidence to call A normal.

Proof We show the decomposition by induction on n.

When n = 1, $A \in C^{1 \times 1}$ is upper-triangular and $A = 1A1^*$. Decomposition holds. Assume the decomposition is true when n = k. Consider $A \in C^{(k+1) \times (k+1)}$.

Suppose A has eigenvalue λ with a unit eigenvector y. Let $Y = (y, Y_2)$ be unitary.

$$A = YY^*AYY^* = Y \begin{pmatrix} y^* \\ Y_2^* \end{pmatrix} (\lambda y, AY_2)Y^* = Y \begin{pmatrix} \lambda & y^*AY_2 \\ 0 & Y_2^*AY_2 \end{pmatrix} Y^*$$

$$\stackrel{*}{=} Y \begin{pmatrix} \lambda & y^*AY_2 \\ 0 & U_1T_1U_1^* \end{pmatrix} Y^* = Y \begin{pmatrix} 1 & 0 \\ 0 & U_1 \end{pmatrix} \begin{pmatrix} \lambda & y^*AY_2U_1 \\ 0 & T_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & U_1^* \end{pmatrix} Y^*$$

$$= UTU^*.$$

* : For $Y_2^*AY_2 \in C^{k \times k}$, by induction assumption $Y_2^*AU_2 = U_1T_1U_1^*$ where T_1 is upper-triangular and U_1 is unitary.

 $T = \begin{pmatrix} \lambda & y^*AY_2U_1 \\ 0 & T_1 \end{pmatrix}$ is upper-triangular and $U = Y \begin{pmatrix} 1 & 0 \\ 0 & U_1 \end{pmatrix}$ is unitary since $UU^* = I_{k+1}$. Thus the decomposition holds for n = k+1.

(3) Properties

By Schur decomposition, $A = UTU^*$, A and T are similar and hence A and T share eigenvalues, ranks, determinants, trace.

T has eigenvalues $t_{11}, ..., t_{nn}$; T has trace $t_{11} + \cdots + t_{11}$; T has determinants $t_{11} \cdots t_{nn}$; But the rank of T is not the number of non-zero diagonal elements.

Ex3: $T = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ is upper-triangular with one non-zero diagonal element. But $\operatorname{rank}(T) = 2$.

2

L10 Normal matrices and Hermitian matrices

1. Normal matrices

(1) Recall

A is normal $\stackrel{def}{\iff} A = X\Lambda X^*$ where X is unitary and Λ is diagonal.

(2) Iff-conditions via eigenvectors

For $A \in C^{n \times n}$, the followings are equivalent

- (i) A is normal
- (ii) A has n orthonormal eigenvectors
- (iii) A has n orthogonal eigenvectors

Proof (i) \Rightarrow (ii): If (i), then $A = X\Lambda X^*$ and $X^* = X^{-1}$. So $AX = X\Lambda$, $X^* = X^{-1}$. Thus the n columns of X are n orthonormal eigenvectors of A.

- (ii) \Rightarrow (iii): The *n* orthonormal eigenvectors are *n* orthogonal eigenvectors.
- (iii) \Rightarrow (i): Dividing each of n orthogonal eigenvectors by its norm we obtain n orthonormal eigenvectors, $x_1, ..., x_n$. Let $X = (x_1, ..., x_n)$. Then $AX = X\Lambda$, X is unitary. Hence $A = X\Lambda X^*$.

Comment: A is normal if $d_i = r_i$ for all i = 1, ..., k, and $S_A(\lambda_i) \perp S_A(\lambda_j)$ for $\lambda_i \neq \lambda_j$.

Ex: $\Lambda = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ with two simple eigenvalues 1 and 2 is diagonalizable.

But $S_A(1) = \operatorname{Span}\left[\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right]$ and $S_A(2) = \left[\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}\right]$ are not perpendicular.

So A does not have two orthogonal eigenvectors. Thus A is not normal.

(3) A simple sufficient and necessary condition

A is a normal matrix \iff $A^*A = AA^*$.

Pf: \Rightarrow : A is normal $\Longrightarrow A = X\Lambda X^* \Longrightarrow A^*A = X\Lambda^*\Lambda X^* = X\Lambda\Lambda^*X^* = AA^*$

 \Leftarrow : By Schur decomposition $A = XTX^*$.

$$A^*A = AA^* \Longrightarrow TT^* = T^*T \stackrel{def}{=\!=\!=} H \stackrel{**}{\Longrightarrow} T = \Lambda \Longrightarrow A = X\Lambda X^*.$$

**: Examining
$$h_{ii}$$
, $i = 1, ..., n$, leads to $H = \Lambda$. For example consider h_{11} in
$$\begin{pmatrix} \bar{t}_{11} & 0 & \cdots & 0 \\ \bar{t}_{12} & \bar{t}_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \bar{t}_{1n} & \bar{t}_{2n} & \cdots & \bar{t}_{nn} \end{pmatrix} \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{nn} \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{nn} \end{pmatrix} \begin{pmatrix} \bar{t}_{11} & 0 & \cdots & 0 \\ \bar{t}_{12} & \bar{t}_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \bar{t}_{1n} & \bar{t}_{2n} & \cdots & \bar{t}_{nn} \end{pmatrix}$$

$$h_{11} = |t_{11}|^2 = |t_{11}|^2 + |t_{12}|^2 + \cdots + |t_{1n}|^2 \Longrightarrow t_{12} = \cdots = t_{1n} = 0 \cdots$$

- 2. Hermitian matrices and real symmetric matrices
 - (1) Hermitian matrices are normal matrices

A is Hermitian $\stackrel{def}{\iff}$ $A^* = A \Longrightarrow A^*A = AA = AA^* \iff A$ is normal $\overset{def}{\Longleftrightarrow}$ $A = U\Lambda U^*$ where Λ is diagonal and U is unitary.

In $C^{n\times n}$ let \mathcal{RS} , \mathcal{H} , \mathcal{N} and \mathcal{D} be the collections of all real symmetric matrices, Hermitian matrices, normal matrices and diagonalizable matrices. Then

$$\mathcal{RS} \subset \mathcal{H} \subset \mathcal{N} \subset \mathcal{D} \subset C^{n \times n}$$
.

- (2) Eigenvalue decomposition For diagonalizable A, $A = X\Lambda X^{-1}$ is eigenvalue decomposition where Λ is eigenvalue matrix and X is eigenvector matrix. For diagonalizable A select d_i LI eigenvectors from $S_A(\lambda_i) = N(A - \lambda_i I)$ to form X. For normal A select d_i orthonormal eigenvectors from $S_A(\lambda_i)$ to form unitary X.
- (3) Eigenvalues of Hermitian AEigenvalues of $A = A^*$ are real

Proof If $Ax = \lambda x$ and $x \neq 0$, then $x^*Ax = \lambda x^*x$ and $\lambda = \frac{x^*Ax}{x^*x}$ where $x^*x = ||x||^2 > 0$. But $\overline{x^*Ax} = (x^*Ax)^* = x^*Ax$. So x^*Ax and consequently λ are both real.

(4) Eigenvectors of Hermitian A For $A^* = A$, $S_A(\lambda_i) \perp S_A(\lambda_j)$ for $\lambda_i \neq \lambda_j$

Proof $Ax_i = \lambda_i x_i, x_i \neq 0; Ax_j = \lambda_j x_j, x_j \neq 0; \text{ and } \lambda_i \neq \lambda_j.$ $\implies x_i^* Ax_j = x_i^* \lambda_j x_j = \lambda_j (x_i^* x_j); x_i^* Ax_j = (Ax_i)^* x_j = (\lambda_i x_i)^* x_j = \lambda_i (x_i^* x_j).$ So $0 = (\lambda_i - \lambda_j)(x_i^* x_j) \implies x_i^* x_j = 0 \implies x_i \perp x_j.$

- (5) For real symmetric A $\overline{A} = A = A'$, the eigenvectors can be required to be real. Thus in $A = X\Lambda X'$, X is orthogonal, i.e., $X' = X^{-1}$.
- 3. Examples

Ex1: Determine if $A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}$ is normal or diagonalizable. If yes, find correspoding Eigenvalue decompositions. (A is real, but not symmetric).

(i)
$$A'A = \begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 16 \end{pmatrix} = AA'$$
. So, A is not normal.

(ii)
$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 \\ -4 & -\lambda \end{vmatrix} = \lambda^4 + 4 = (\lambda - 2i)(\lambda + 2i) \Longrightarrow \lambda_1 = 2i \text{ and } \lambda_2 = -2i.$$

Because all eigenvalues are simple ones, A is diagonalizable.

(iii)
$$A - \lambda_1 I \longrightarrow \begin{pmatrix} -2i & 1 \\ 0 & 0 \end{pmatrix} \Longrightarrow x_1 = \begin{pmatrix} 1 \\ 2i \end{pmatrix}; \quad A - \lambda_2 I \longrightarrow \begin{pmatrix} 2i & 1 \\ 0 & 0 \end{pmatrix} \Longrightarrow x_2 = \begin{pmatrix} 1 \\ -2i \end{pmatrix}$$

Let $X = \begin{pmatrix} 1 & 1 \\ 2i & -2i \end{pmatrix}, \Lambda = \begin{pmatrix} 2i & 0 \\ 0 & -2i \end{pmatrix}$. Then $A = X\Lambda X^{-1}$.

Ex2: $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is real symmetric and hence is normal.

$$|A - \lambda I| = 0 \Longrightarrow \lambda_1 = 1 \text{ and } \lambda_2 = -1;$$

$$A - \lambda_1 I \to \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \Longrightarrow u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \quad A - \lambda_2 I \to \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \Longrightarrow u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Let $U = (u_1, u_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $A = U\Lambda U'$.

Ex3: $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Does A have two orthogonal eigenvectors? LI eigenvectors?

 $A'A \neq AA'$. So A does not have two orthogonal eigenvectors.

A has eigenvalue $\lambda = 1$ with r = 2. But $d = \dim[S_A(1)] = \dim[N(A - I)] = 2 - 1 \neq r$. So A does not have 2 LI eigenvectors.

Ex4: Diagonalizable $A \in C^{n \times n}$ has eigenvalue $\lambda_1, ..., \lambda_n$. Find eigenvalues for A^2 . By EVD, $A = X\Lambda X^{-1}$. So $A^2 = X\Lambda^2 X^{-1}$. Thus A^2 have eigenvalues $\lambda_1^2, ..., \lambda_n^2$.