L08: Eigenvalues and eigenvectors

1. Eigenvalues

(1) Eigenvalue and eigenvector

 $x \in C^n$ is an eigenvector wrt the eigenvalue $\lambda \in C$ for $A \in C^{n \times n} \stackrel{def}{\iff} Ax = \lambda x, x \neq 0$.

Comments: If x = 0 is allowed to be an eigenvector, all λ would have been eigenvalues. When $\lambda = 0$, Ax = 0, $x \neq 0 \iff 0 \neq x \in \mathcal{N}(A)$ gives all eigenvectors for $\lambda = 0$.

(2) Distinct eigenvalues and multiplicity

 λ is an eigenvalue for $A \iff Ax = \lambda x, x \neq 0 \iff (A - \lambda I)x = 0, x \neq 0$

$$\iff$$
 rank $(A - \lambda I) < n \iff |A - \lambda I| = 0$

 \iff λ is a solution to the equation $|A - \lambda I| = 0$.

$$p(\lambda) = |A - \lambda I| = (-\lambda)^n + c_{n-1}(-\lambda)^{n-1} + \dots + c_1(-\lambda) + c_0 = (\lambda_1 - \lambda) \dots (\lambda_n - \lambda)$$
$$= (\lambda_1 - \lambda)^{r_1} \dots (\lambda_k - \lambda)^{r_k}$$

is the characteristic polynomial, and $P(\lambda) = 0$ is characteristic equation.

 $\lambda_1, ..., \lambda_k$ are distinct eigenvalues with multiplicity $r_1, ..., r_k$. $r_1 + \cdots + r_k = n$.

An eigenvalue is a simple one if its multiplicity is 1.

(3) Coefficients of characteristic polynomial

For A with n eigenvalues $\lambda_1, ..., \lambda_n$, (may not be distinct), in

$$p(\lambda) = |A - \lambda I| = (-\lambda)^n + c_{n-1}(-\lambda)^{n-1} + \dots + c_1(-\lambda) + c_0 = (\lambda_1 - \lambda) + \dots + (\lambda_n - \lambda),$$

$$c_0 = |A| = \lambda_1 \cdots \lambda_n$$
 and $c_{n-1} = \operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$.

Pf: $P(0) = |A| = c_0 = \lambda_1 \cdots \lambda_n$.

The term $(-\lambda)^{n-1}$ in $|A - \lambda I|$ is from $(a_{11} - \lambda) \cdots (a_{nn} - \lambda)$ with coefficient tr(A).

The term $(-\lambda)^{n-1}$ in $p(\lambda)$ has coefficient c_{n-1} .

The term $(-\lambda)^{n-1}$ in $(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$ has coefficient $\lambda_1 + \cdots + \lambda_n$.

So $\operatorname{tr}(A) = c_{n-1} = \sum_i \lambda_i$.

Ex1:
$$A = \begin{pmatrix} 0 & -1 \\ 4 & 0 \end{pmatrix}$$
, $|A - \lambda I| = \begin{vmatrix} -\lambda & -1 \\ 4 & -\lambda \end{vmatrix} = \lambda^2 + 4 = (\lambda - 2i)(\lambda + 2i) \stackrel{set}{=} 0 \Rightarrow \lambda_{1,2} = \pm 2i$ are two simple eigenvalues. $\lambda_1 + \lambda_2 = 0 = \operatorname{tr}(A)$ and $\lambda_1 \lambda_2 = 4 = |A|$.

Comment: The eigenvalues of a real matrix might be complex numbers.

2. Eigenvectors

(1) Eigenspace

x is an eigenvector of A wrt $\lambda_i \iff Ax = \lambda_i x, \ x \neq 0 \iff (A - \lambda_i I)x = 0, \ x \neq 0$ $\iff 0 \neq x \in \mathcal{N}(A - \lambda_i I) \xrightarrow{def} S_A(\lambda_i).$

Every vector but 0 in the eigenspace $S_A(\lambda_i) = \mathcal{N}(A - \lambda_i I)$ is an eigenvector of A wrt λ_i .

(2) Dimension of eigenspace

Let $d_i = \dim[S_A(\lambda_i)] = \dim[\mathcal{N}(A - \lambda_i I)] = n - \operatorname{rank}(A - \lambda_i I) \ge 1$.

A has d_i LI eigenvectors wrt λ_i . It has d_i orthogonal eigenvectors wrt λ_i .

It has d_i orthonormal eigenvectors wrt λ_i .

So there exists $P_i \in C^{n \times d_i}$ with $P_i^* P_i = I_{d_i}$ and $AP_i = \lambda_i P_i$.

 $(3) 1 \le d_i \le r_i.$

Proof
$$A \in C^{n \times n}$$
 has eigenvalue λ_i with multiplicity r_i and $d_i = \dim[S_A(\lambda_i)] \ge 1$.
Let $P_I \in C^{n \times d_i}$ with $P_I^* P_I = I_{d_i}$ and $AP_I = \lambda_i P_I$. Non-singular $P = (P_I, P_{II})$ has $P^{-1} = (Q_I, Q_{II})'$. So $\begin{pmatrix} I_{d_i} & 0 \\ 0 & I \end{pmatrix} = Q'P = \begin{pmatrix} Q'_I P_I & Q'_I P_{II} \\ Q'_{II} P_I & Q'_{II} P_{II} \end{pmatrix}$.
$$|A - \lambda I| = |P^{-1}| |A - \lambda I| |P| = |P^{-1}(AP_I, AP_{II}) - \lambda I_n|$$

$$= |Q'_I| (\lambda_i P_I, AP_{II}) - \lambda I_n| = |(\lambda_i - \lambda)I_{d_i} \quad Q'_I AP_{II} - \lambda I|$$

$$= (\lambda_i - \lambda)^{d_i} |Q'_{II} AP_{II} - \lambda I_{n-d_i}|.$$
 So, $d_i < r_i$.

Comment: $k \leq \sum_{i=1}^{k} d_i \leq n$.

Ex2: For
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $|A - \lambda I| = \lambda^2$ So $\lambda = 0$ with $r = 2$. $d = \dim[\mathcal{N}(A - \lambda I)] = \dim[\mathcal{N}(A)] = 2 - \operatorname{rank}(A) = 2 - 1 = 1 < 2 = r$.

- 3. Total number of LI eigenvectors
 - (1) Vectors from different eigenspaces

 $\lambda_1, ..., \lambda_k$ are distinct eigenvalues for $A \in C^{n \times n}$. Let $x_i \in S_A(\lambda_i) = \mathcal{N}(A - \lambda_i I)$. Then $x_1 + \cdots + x_k = 0 \Longrightarrow x_1 = \cdots = x_k = 0$.

Proof We show by induction. $x_1 = 0 \Longrightarrow x_1 = 0$. So the statement holds for k = 1. Assuming that the statement holds for k = t - 1, now consider k = t.

$$x_1 + \dots + x_{t-1} + x_t = 0 \Longrightarrow \begin{cases} \lambda_t x_1 + \dots + \lambda_t x_{t-1} + \lambda_t x_t &= 0 \\ \lambda_1 x_1 + \dots + \lambda_{t-1} x_{t-1} + \lambda_t x_t &= 0 \end{cases}$$

$$\Longrightarrow (\lambda_t - \lambda_1) x_1 + \dots + (\lambda_t - \lambda_{t-1}) x_{t-1} = 0$$

$$\Longrightarrow (\lambda_t - \lambda_1) x_1 = \dots = (\lambda_t - \lambda_{t-1}) x_{t-1} = 0$$

$$\Longrightarrow x_1 = \dots = x_{t-1} = 0 \Longrightarrow x_1 = \dots = x_{t-1} = x_t = 0$$

(2) If A has distinct eigenvalues $\lambda_1, ..., \lambda_k$, then A has $d_1 + \cdots + d_k$ LI eigenvectors.

Proof A has d_i LI eigenvectors $x_{i1}, ..., x_{id_i}$ in $S_A(\lambda_i)$ wrt to λ_i .

We show $d_1 + \cdots + d_k$ eigenvectors $x_{11}, ..., d_{kd_k}$ are LI. $\sum_{ij} \alpha_{ij} x_{ij} = 0 \implies y_1 + \cdots + y_k = 0 \text{ where } y_i = \sum_j \alpha_{ij} x_{ij} \in S_A(\lambda_i)$ $\implies y_i = 0 \text{ for all } i \text{ by } (1)$

 $\implies \alpha_{ij} = 0$ for all i, j since in y_i is a LC of LI vectors.

(3) Conditions for $A \in C^{n \times n}$ to have n LI eigenvectors.

 $A \in C^{n \times n}$ has n LI eigenvectors $\iff d_1 + \dots + d_k = n \iff d_i = r_i$ for all $i \iff d_i = r_i$ for all $r_i > 1$.

If all eigenvalues for A are simple ones, then A has n LI eigenvectors.

Ex3: $A \in C^{2 \times 2}$ in Ex1 has 2 LI eigenvectors since it has two simple eigenvalues. $A \in C^{2 \times 2}$ in Ex2 does not have 2 LI eigenvectors since d = 1 < 2 = r.

Comment: A may not have $d_1 + \cdots + d_k$ orthogonal eigenvectors since even if $x_{11}, ..., x_{1d_1}$ are orthogonal eigenvector wrt to λ_1 , and $x_{21}, ..., x_{2d_2}$ are orthogonal eigenvectors wrt to λ_2 , but $x_{11}, ..., x_{2d_2}$ may not be orthogonal.