
L06 Unitary, Hermitian and Idempotent matrices

1 Unitary matrices

(1) Frobenius inner product
⟨x, y⟩ is an inner product if (i) ⟨x, y⟩ = ⟨y, x⟩ (ii) ⟨ax + by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩ (iii)
⟨x, x⟩ ≥ 0 for all x and ⟨x, x⟩ = 0 ⇐⇒ x = 0.
For x, y ∈ Cn, ⟨x, y⟩ = y∗x, for x, y ∈ Rn, ⟨x, y⟩ = y′x are Frobenius inner product.

(2) Norm and angle
∥x∥ =

√
⟨x, x⟩ =

√
x∗x is the norm of x; So x ∈ Cn is a unit vector ⇐⇒ x∗x = 1.

θ is the angle formed by x ̸= 0 and y ̸= 0
def⇐⇒ cos(θ) = ⟨x, y⟩

∥x∥ ∥y∥ .

x and y are orthogonal ⇐⇒ x ⊥ y ⇐⇒ ⟨x, y⟩ = 0 =⇒ ∥x± y∥2 = ∥x∥2 + ∥y∥2.
(3) Interpretation of A∗B

For A = (A1, ..., Ap) ∈ Cm×p and B = (B1, ..., Bq) ∈ Cm×q A∗B = (A∗
iBj)p×q is the

matrix of inner products of the columns of A and that of B.
A∗B = 0 ⇐⇒ B∗A = 0 ⇐⇒ The columns of A are perpendicular to the columns of B

(4) Matrix with orthonormal columns
For A = (A1, ..., Ap) ∈ Cm×p, A∗A = (A∗

iAj)p×p = (⟨Aj Ai⟩)p×p. So
A∗A = diag(d1, ..., dp) ⇐⇒ Ai ⊥ Aj for all i ̸= j.

A∗A = diag(d1, ..., dp), di > 0 ∀ i ⇐⇒ Ai ̸= 0 for all i, Ai ⊥ Aj for all i ̸= j
def⇐⇒ A has orthogonal columns
=⇒ A has full column rank.

A∗A = Ip ⇐⇒ ∥Ai∥ = 1 for all i, Ai ⊥ Aj for all i ̸= j ⇐⇒ A has orthonormal columns

(5) Unitary matrices
A ∈ Cn×n.

A is unitary
def⇐⇒ A−1 = A∗ ⇐⇒ A∗A = In ⇐⇒ A has orthonormal columns
⇐⇒ AA∗ = I ⇐⇒ (A′)∗A′ = In ⇐⇒ A has orthonormal rows

A ∈ Rn×n.
A is unitary ⇐⇒ A−1 = A′ ⇐⇒ A′A = In ⇐⇒ A has orthonormal columns

⇐⇒ AA′ = I ⇐⇒ A has orthonormal rows
def⇐⇒ A is orthogonal

Ex1: Show that if A has orthogonal columns, then A has full column rank.
Ax = 0 =⇒ A∗Ax = 0 =⇒ diag(d1, .., dp)x = 0 =⇒ x = [diag(d1, .., dp)]

−10 = 0.

2. Hermitian matrices

(1) Hermitian matrix and quadratic form
A ∈ Cn×n

A is Hermitian
def⇐⇒ A∗ = A

def⇐⇒ z∗Az is a quadratic form of z ∈ Cn =⇒ z∗Az is real.
A ∈ Rn×n

A is Hermitian ⇐⇒ A∗ = A ⇐⇒ A′ = A ⇐⇒ A is real symmetric
⇐⇒ x′Ax is a quadratic form of x ∈ Rn.

Ex2: Show that if A∗ = A, then z∗Az is real.
z∗Az = (z∗Az)∗ = z∗A∗z = z∗Az =⇒ z∗Az is real.
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(2) Definite and semi-definite matrices

A > 0 A is positive definite
def⇐⇒ A = A∗ and z∗Az > 0 ∀ 0 ̸= z ∈ Cn

A ≥ 0 A is semi p.d.
def⇐⇒ A = A∗ and z∗Az ≥ 0 ∀ 0 ̸= z ∈ Cn

A < 0 A is negative definite
def⇐⇒ A = A∗ and z∗Az < 0 ∀ 0 ̸= z ∈ Cn

A ≤ 0 A is semi n. d.
def⇐⇒ A = A∗ and z∗Az ≤ 0 ∀ 0 ̸= z ∈ Cn.

Ex2: By the definition one can show that A =

(
1 0
0 2

)
> 0; B =

(
1 0
0 0

)
≥ 0. But But

C =

(
1 0
0 −2

)
is not a definite nor semi-definite matrix.

(3) Notation extension
A > 0 ⇐⇒ 0 < A, A ≥ 0 ⇐⇒ 0 ≤ A, A < 0 ⇐⇒ 0 > A, A ≤ 0 ⇐⇒ 0 ≥ A.
A > B ⇐⇒ A−B > 0, A ≥ B ⇐⇒ A−B ≥ 0, A < B ⇐⇒ A−B < 0 and
A ≤ 0 ⇐⇒ A−B ≤ 0.

(4) Properties
>, ≥, < and ≤ are all transitive. For example, A > B and B > C =⇒ A > C.
>, ≥, < and ≤ q are all preserved under scalar multiplication with positive scalar. For
example A < 0 =⇒ aA < 0 for all a > 0
But with a < 0, A > 0 =⇒ aA < 0, A ≥ 0 =⇒ aA ≤ 0, A < 0 =⇒ aA > 0 and
A ≤ 0 =⇒ aA ≥ 0.

(5) Properties for ≥ and ≤
≥ and ≤ are reflexive, i.e., A ≥ A and A ≤ A for all A = A∗

≥ and ≤ are preserved under scalar multiplication with non-negative scalars. For exam-
ple A ≤ 0 =⇒ aA ≤ 0 for all a ≥ 0.

Ex3: Show A ≥ 0 =⇒ BAB∗ ≥ 0.
For vector z, let y = B∗z. Then z∗BAB∗z = y∗Ay ≥ 0. So BAB∗ ≥ 0.

3. Idempotent matrices

(1) A decomposition based on rank
For A ∈ Cm×n with rank(A) = r there exist non-singular P ∈ Cm×m and Q ∈ Cn×n

such that A = P

(
Ir 0
0 0

)
Q′.

Proof: A
e.r.−→

(
H
0

)
, (H ′, 0)

e.r.
=⇒

(
Ir 0
0 0

)
=⇒ P−1A =

(
H
0

)
, Q−1(H ′, 0) =

(
Ir 0
0 0

)
.

=⇒ A = P

(
Ir 0
0 0

)
Q′.

Compact form: A = PIQ
′
I where PI ∈ Cm×r, QI ∈ Cn×r, rank(PI) = rank(QI) = r.

(2) Idempotent matrices: A ∈ Cn×n is idempotent
def⇐⇒ A2 = A.

(3) If A is idempotent, then rank(A) = tr(A).

Pf: A with rank(A) = r has decomposition A = PIQ
′
I based on rank r.

A2 = A =⇒ PIQ
′
IPIQ

′
I = PIQ

′
I =⇒ Q′

IPI = Ir.
So tr(A) = tr(PIQ

′
I) = tr(Q′

IPI) = tr(Ir) = r = rank(A).
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L07 QR-decomposition and decompositions based on ranks

1. Gram-Schmidt process

(1) From LI vectors to orthogonal vectors
For LI xi ∈ Cn, i = 1, ..., r, there are orthogonal yi ∈ Cn, i = 1, ..., r such that xi is a
LC of y1, .., yi, i = 1, ..., r.

Process: Let yi ∝ xi − ⟨xi, y1⟩
∥y1∥2 y1 − · · · − ⟨xi, yi−1⟩

∥yi−1∥2 yi−1, i = 1, ..., r.

Proof. Skipped

Ex1: x1 =

1
2
1

, x2 =

−1
0
1

 and x3 =

2
1
1

 are LI.

y1 ∝ x1. Let y1 = x1 =

1
2
1

, x1 = y1;

y2 ∝ x2 − ⟨x2, y1⟩
∥y1∥2 y1 = x2. Let y2 = x2 =

−1
0
1

, x2 = y2;

y3 ∝ x3 − ⟨x3, y1⟩
∥y1∥2 y1 − ⟨x3, y2⟩

∥y2∥2 y2 = x3 − 5
6y1 +

1
2y2 = 1

6(6x3 − 5y1 + 3y2) =
1
6

 4
−4
4

.

Let y3 =
6
4x3 −

5
4y1 +

3
4y2 =

 1
−1
1

, x3 =
5
6y1 −

3
6y2 +

4
6y3.

Then y1, y2, y3 are orthogonal and xi is a LC of y1, .., yi.

Comment: y1, ..., yr are not unique.

(2) A decomposition
Writing (1) in matrix form: For full column rank X ∈ Cn×r, X = Y T where Y ∈ Cn×r

has orthogonal columns and T ∈ Cr×r is non-singular upper-triangular matrix.

Ex2: For X =

1 −1 2
2 0 1
1 1 1

 Y =

1 −1 1
2 0 −1
1 1 1

 and T =

1 0 5/6
0 1 −3/6
0 0 4/6

 such that

Y ′Y = diag(6, 2, 3) and X = Y T .

2. QR-decomposition

(1) QR-decomposition I
For X ∈ Cn×r with rank r, there are Q ∈ Cn×r with orthonormal columns and non-
singular upper-triangular R ∈ Rr×r such that X = QR.

Proof. X = Y T = [Y (Y ∗Y )−1/2][(Y ∗Y )1/2T ] = QR where Y ∗Y = diag(∥Y1∥2, ..., ∥Yr∥2),
(Y ∗Y )−1/2 = diag(∥Y1∥−1, ..., ∥Yr∥−1) and (Y ∗Y )1/2 = diag(∥Y1∥, ..., ∥Yr∥). So
Q∗Q = Ir and R is non-singular upper-triangular.

Ex3: ForX =

1 −1 2
2 0 1
1 1 1

, Q =

1/
√
5 −1/

√
2 1/

√
3

2/
√
5 0 −1/

√
3

1/
√
5 1/

√
2 1/

√
3

, R =


√
5 0 5

√
5/6

0
√
2 −

√
2/2

0 0 2
√
3/3


and X = QR.
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(2) QR-decomposition II
In QR-decomposition X = QR the diagonal elements of upper-triangular R can have
designated signs.

Proof. Let E ∈ Rr×r be an elementary matrix obtained by multiplying the ith row of
Ir by −1. Then ER changes the sign of the ith row of R. and QE changes the sign
of ith column of Q. But EE = I. So X = (QE)(ER) where the new Q, QE, still
has orthonormal columns and new R, ER, has the signs of ith row changed.

3. Decompositions based on ranks

(1) Recall
For A ∈ Cm×n with rank(A) = r, A = PIQ

′
I

where PI ∈ Cm×r, QI ∈ Cn×r and rank(PI) = rank(QI) = r.
Also rank(A) = rank(A′) = rank(A) = rank(A∗).
We claim that we can require one of PI and QI to have orthonormal columns.

(2) Decomposition based on rank

For A ∈ Cm×n with rank(A) = r, A = UT ′ = HV ′

where U, H ∈ Cm×r, T, V ∈ Cn×r, U∗U = V ∗V = Ir and rank(H) = rank(T ) = r.

Proof In A = PIQ
′
I , by QR-decomposition PI = UR1 and QI = V R2.

So A = (UR1)Q
′
I = U(QIR1)

′ = UT ′ and A = PI(V R2)
′ = (PIR

′
2)V

′ = HV ′.

(3) Applications

rank(A∗A) = rank(AA∗) = rank(A).

Proof A = UT ′ where U∗U = I and T has full column rank r = rank(A). So,

rank(A∗A) = rank
(
(UT ′)∗(UT ′)

)
= rank(TT ′) = rank(T ) = r = rank(A).

A = HV ′ where V ∗V = I and H has full column rank r = rank(A). So

rank(AA∗) = rank
(
(HV ′V H∗) = rank

(
H(V ∗V )H∗

)
= rank(HH∗)

= rank(H) = r = rank(A).

Comment: For A ∈ Rm×n, rank(A′A) = rank(AA′) = rank(A).
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