L06 Unitary, Hermitian and Idempotent matrices

1 Unitary matrices

(1) Frobenius inner product

 $\langle x, y \rangle$ is an inner product if (i) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (ii) $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ (iii) $\langle x, x \rangle \ge 0$ for all x and $\langle x, x \rangle = 0 \iff x = 0$.

For $x, y \in C^n$, $\langle x, y \rangle = y^*x$, for $x, y \in R^n$, $\langle x, y \rangle = y'x$ are Frobenius inner product.

(2) Norm and angle

 $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^*x}$ is the norm of x; So $x \in \mathbb{C}^n$ is a unit vector $\iff x^*x = 1$.

 θ is the angle formed by $x \neq 0$ and $y \neq 0 \stackrel{def}{\Longleftrightarrow} \cos(\theta) = \frac{\langle x, y \rangle}{\|x\| \|y\|}$. x and y are orthogonal $\iff x \perp y \iff \langle x, y \rangle = 0 \implies \|x \pm y\|^2 = \|x\|^2 + \|y\|^2$.

(3) Interpretation of A^*B

For $A = (A_1, ..., A_p) \in C^{m \times p}$ and $B = (B_1, ..., B_q) \in C^{m \times q}$ $A^*B = (A_i^*B_j)_{n \times q}$ is the matrix of inner products of the columns of A and that of B.

 $A^*B = 0 \iff B^*A = 0 \iff$ The columns of A are perpendicular to the columns of B

(4) Matrix with orthonormal columns

For $A = (A_1, ..., A_p) \in C^{m \times p}$, $A^*A = (A_i^*A_j)_{n \times n} = (\langle A_j A_i \rangle)_{n \times n}$. So

 $A^*A = \operatorname{diag}(d_1, ..., d_p) \iff A_i \perp A_j \text{ for all } i \neq j.$

 $A^*A = \operatorname{diag}(d_1, ..., d_p), d_i > 0 \,\forall i \iff A_i \neq 0 \text{ for all } i, A_i \perp A_j \text{ for all } i \neq j$

 $\stackrel{def}{\Longleftrightarrow}$ A has orthogonal columns

 \implies A has full column rank.

 $A^*A = I_p \iff ||A_i|| = 1$ for all $i, A_i \perp A_j$ for all $i \neq j \iff A$ has orthonormal columns

(5) Unitary matrices

 $A \in C^{n \times n}$.

A is unitary $\stackrel{def}{\iff} A^{-1} = A^* \iff A^*A = I_n \iff A \text{ has orthonormal columns}$ $\iff AA^* = I \iff (A')^*A' = I_n \iff A \text{ has orthonormal rows}$

 $A \in \mathbb{R}^{n \times n}$.

 $\iff A^{-1} = A' \iff A'A = I_n \iff A \text{ has orthonormal columns}$ $\iff AA' = I \iff A$ has orthonormal rows $\stackrel{def}{\Longleftrightarrow} A$ is orthogonal

Ex1: Show that if A has orthogonal columns, then A has full column rank.

 $Ax = 0 \Longrightarrow A^*Ax = 0 \Longrightarrow \operatorname{diag}(d_1, ..., d_p)x = 0 \Longrightarrow x = [\operatorname{diag}(d_1, ..., d_p)]^{-1}0 = 0.$

2. Hermitian matrices

(1) Hermitian matrix and quadratic form

A is Hermitian $\stackrel{def}{\iff} A^* = A \stackrel{def}{\iff} z^*Az$ is a quadratic form of $z \in C^n \Longrightarrow z^*Az$ is real.

 $A \in \mathbb{R}^{n \times n}$

A is Hermitian \iff $A^* = A \iff A' = A \iff A$ is real symmetric \iff x'Ax is a quadratic form of $x \in \mathbb{R}^n$.

1

Ex2: Show that if $A^* = A$, then z^*Az is real.

 $\overline{z^*Az} = (z^*Az)^* = z^*A^*z = z^*Az \Longrightarrow z^*Az$ is real.

(2) Definite and semi-definite matrices

$$A > 0$$
 A is positive definite $\stackrel{def}{\iff} A = A^*$ and $z^*Az > 0 \,\forall \, 0 \neq z \in C^n$

$$A \ge 0$$
 A is semi p.d. $\stackrel{def}{\iff} A = A^* \text{ and } z^*Az \ge 0 \,\forall \, 0 \ne z \in C^n$

$$A < 0$$
 A is negative definite $\stackrel{def}{\iff} A = A^*$ and $z^*Az < 0 \,\forall \, 0 \neq z \in C^n$

$$A \leq 0$$
 A is semi n. d. $\stackrel{def}{\iff} A = A^* \text{ and } z^*Az \leq 0 \,\forall \, 0 \neq z \in C^n$.

Ex2: By the definition one can show that
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} > 0$$
; $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ge 0$. But But

$$C = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$
 is not a definite nor semi-definite matrix.

(3) Notation extension

$$A > 0 \Longleftrightarrow 0 < A, A \ge 0 \Longleftrightarrow 0 \le A, A < 0 \Longleftrightarrow 0 > A, A \le 0 \Longleftrightarrow 0 \ge A.$$

$$A > B \iff A - B > 0, A \ge B \iff A - B \ge 0, A < B \iff A - B < 0 \text{ and } A < 0 \iff A - B < 0.$$

(4) Properties

$$>$$
, \geq , $<$ and \leq are all transitive. For example, $A > B$ and $B > C \Longrightarrow A > C$.

>, \geq , < and $\leq q$ are all preserved under scalar multiplication with positive scalar. For example $A < 0 \Longrightarrow aA < 0$ for all a > 0

But with
$$a<0,\ A>0 \Longrightarrow aA<0,\ A\geq0 \Longrightarrow aA\leq0,\ A<0 \Longrightarrow aA>0$$
 and $A\leq0\Longrightarrow aA\geq0.$

(5) Properties for > and <

$$\geq$$
 and \leq are reflexive, i.e., $A \geq A$ and $A \leq A$ for all $A = A^*$

 \geq and \leq are preserved under scalar multiplication with non-negative scalars. For example $A < 0 \Longrightarrow aA < 0$ for all a > 0.

Ex3: Show
$$A > 0 \Longrightarrow BAB^* > 0$$
.

For vector z, let
$$y = B^*z$$
. Then $z^*BAB^*z = y^*Ay \ge 0$. So $BAB^* \ge 0$.

3. Idempotent matrices

(1) A decomposition based on rank

For $A \in C^{m \times n}$ with rank(A) = r there exist non-singular $P \in C^{m \times m}$ and $Q \in C^{n \times n}$ such that $A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q'$.

$$\begin{aligned} \mathbf{Proof:} \ A & \xrightarrow{e.r.} \begin{pmatrix} H \\ 0 \end{pmatrix}, \ (H', \ 0) \overset{e.r.}{\Longrightarrow} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \Longrightarrow P^{-1}A = \begin{pmatrix} H \\ 0 \end{pmatrix}, \ Q^{-1}(H', \ 0) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}. \\ & \Longrightarrow A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q'. \end{aligned}$$

Compact form: $A = P_I Q_I'$ where $P_I \in C^{m \times r}$, $Q_I \in C^{n \times r}$, rank $(P_I) = \text{rank}(Q_I) = r$.

- (2) Idempotent matrices: $A \in C^{n \times n}$ is idempotent $\stackrel{def}{\iff} A^2 = A$.
- (3) If A is idempotent, then rank(A) = tr(A).

Pf: A with rank(A) = r has decomposition $A = P_I Q_I'$ based on rank r.

$$A^2 = A \Longrightarrow P_I Q_I' P_I Q_I' = P_I Q_I' \Longrightarrow Q_I' P_I = I_r.$$

So
$$\operatorname{tr}(A) = \operatorname{tr}(P_I Q_I') = \operatorname{tr}(Q_I' P_I) = \operatorname{tr}(I_r) = r = \operatorname{rank}(A).$$

L07 QR-decomposition and decompositions based on ranks

1. Gram-Schmidt process

(1) From LI vectors to orthogonal vectors

For LI $x_i \in C^n$, i = 1, ..., r, there are orthogonal $y_i \in C^n$, i = 1, ..., r such that x_i is a LC of $y_1, ..., y_i$, i = 1, ..., r.

Process: Let $y_i \propto x_i - \frac{\langle x_i, y_1 \rangle}{\|y_1\|^2} y_1 - \dots - \frac{\langle x_i, y_{i-1} \rangle}{\|y_{i-1}\|^2} y_{i-1}, i = 1, ..., r.$

Proof. Skipped

Ex1:
$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $x_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $x_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ are LI.
 $y_1 \propto x_1$. Let $y_1 = x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $x_1 = y_1$;
 $y_2 \propto x_2 - \frac{\langle x_2, y_1 \rangle}{\|y_1\|^2} y_1 = x_2$. Let $y_2 = x_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $x_2 = y_2$;

$$y_3 \propto x_3 - \frac{\langle x_3, y_1 \rangle}{\|y_1\|^2} y_1 - \frac{\langle x_3, y_2 \rangle}{\|y_2\|^2} y_2 = x_3 - \frac{5}{6} y_1 + \frac{1}{2} y_2 = \frac{1}{6} (6x_3 - 5y_1 + 3y_2) = \frac{1}{6} \begin{pmatrix} 4 \\ -4 \\ 4 \end{pmatrix}.$$

Let
$$y_3 = \frac{6}{4}x_3 - \frac{5}{4}y_1 + \frac{3}{4}y_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
, $x_3 = \frac{5}{6}y_1 - \frac{3}{6}y_2 + \frac{4}{6}y_3$.

Then y_1, y_2, y_3 are orthogonal and x_i is a LC of $y_1, ..., y_i$.

Comment: $y_1, ..., y_r$ are not unique.

(2) A decomposition

Writing (1) in matrix form: For full column rank $X \in C^{n \times r}$, X = YT where $Y \in C^{n \times r}$ has orthogonal columns and $T \in C^{r \times r}$ is non-singular upper-triangular matrix.

Ex2: For
$$X = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} Y = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 0 & 5/6 \\ 0 & 1 & -3/6 \\ 0 & 0 & 4/6 \end{pmatrix}$ such that $Y'Y = \text{diag}(6, 2, 3)$ and $X = YT$.

2. QR-decomposition

(1) QR-decomposition I

For $X \in C^{n \times r}$ with rank r, there are $Q \in C^{n \times r}$ with orthonormal columns and non-singular upper-triangular $R \in R^{r \times r}$ such that X = QR.

Proof. $X = YT = [Y(Y^*Y)^{-1/2}][(Y^*Y)^{1/2}T] = QR$ where $Y^*Y = \text{diag}(\|Y_1\|^2, ..., \|Y_r\|^2)$. $(Y^*Y)^{-1/2} = \text{diag}(\|Y_1\|^{-1}, ..., \|Y_r\|^{-1})$ and $(Y^*Y)^{1/2} = \text{diag}(\|Y_1\|, ..., \|Y_r\|)$. So $Q^*Q = I_r$ and R is non-singular upper-triangular.

Ex3: For
$$X = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $Q = \begin{pmatrix} 1/\sqrt{5} & -1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{5} & 0 & -1/\sqrt{3} \\ 1/\sqrt{5} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}$, $R = \begin{pmatrix} \sqrt{5} & 0 & 5\sqrt{5}/6 \\ 0 & \sqrt{2} & -\sqrt{2}/2 \\ 0 & 0 & 2\sqrt{3}/3 \end{pmatrix}$ and $X = QR$.

3

(2) QR-decomposition II

In QR-decomposition X = QR the diagonal elements of upper-triangular R can have designated signs.

Proof. Let $E \in \mathbb{R}^{r \times r}$ be an elementary matrix obtained by multiplying the *i*th row of I_r by -1. Then ER changes the sign of the *i*th row of R. and QE changes the sign of *i*th column of Q. But EE = I. So X = (QE)(ER) where the new Q, QE, still has orthonormal columns and new R, ER, has the signs of *i*th row changed.

3. Decompositions based on ranks

(1) Recall

For
$$A \in C^{m \times n}$$
 with $\operatorname{rank}(A) = r$, $A = P_I Q_I'$
where $P_I \in C^{m \times r}$, $Q_I \in C^{n \times r}$ and $\operatorname{rank}(P_I) = \operatorname{rank}(Q_I) = r$.
Also $\operatorname{rank}(A) = \operatorname{rank}(A') = \operatorname{rank}(\overline{A}) = \operatorname{rank}(A^*)$.

We claim that we can require one of P_I and Q_I to have orthonormal columns.

(2) Decomposition based on rank

For
$$A \in C^{m \times n}$$
 with $\operatorname{rank}(A) = r$, $A = UT' = HV'$
where $U, H \in C^{m \times r}$, $T, V \in C^{n \times r}$, $U^*U = V^*V = I_r$ and $\operatorname{rank}(H) = \operatorname{rank}(T) = r$.
Proof In $A = P_I Q_I'$, by QR-decomposition $P_I = UR_1$ and $Q_I = VR_2$.
So $A = (UR_1)Q_I' = U(Q_IR_1)' = UT'$ and $A = P_I(VR_2)' = (P_IR_2')V' = HV'$.

(3) Applications

$$\operatorname{rank}(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A).$$

Proof $A = UT'$ where $U^*U = I$ and T has full column rank $r = \operatorname{rank}(A)$. So,

$$\operatorname{rank}(A^*A) = \operatorname{rank}\left((UT')^*(UT')\right) = \operatorname{rank}(\overline{T}T') = \operatorname{rank}(T) = r = \operatorname{rank}(A).$$

A=HV' where $V^*V=I$ and H has full column rank $r=\mathrm{rank}(A)$. So

$$\begin{split} \operatorname{rank}(AA^*) &= \operatorname{rank}\left((HV'\overline{V}H^*\right) = \operatorname{rank}\left(H\overline{(V^*V)}H^*\right) = \operatorname{rank}(HH^*) \\ &= \operatorname{rank}(H) = r = \operatorname{rank}(A). \end{split}$$

Comment: For $A \in \mathbb{R}^{m \times n}$, rank(A'A) = rank(AA') = rank(A).